|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """train_criteo."""
- import os
- import json
- import argparse
-
- from mindspore import context, Tensor, ParameterTuple
- from mindspore.context import ParallelMode
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.nn.optim import Adam
- from mindspore.nn import TrainOneStepCell
- from mindspore.train import Model
-
- from src.deepspeech2 import DeepSpeechModel, NetWithLossClass
- from src.lr_generator import get_lr
- from src.config import train_config
- from src.dataset import create_dataset
-
- parser = argparse.ArgumentParser(description='DeepSpeech2 training')
- parser.add_argument('--pre_trained_model_path', type=str, default='', help='Pretrained checkpoint path')
- parser.add_argument('--is_distributed', action="store_true", default=False, help='Distributed training')
- parser.add_argument('--bidirectional', action="store_false", default=True, help='Use bidirectional RNN')
- parser.add_argument('--device_target', type=str, default="GPU", choices=("GPU", "CPU"),
- help='Device target, support GPU and CPU, Default: GPU')
- args = parser.parse_args()
-
- if __name__ == '__main__':
- rank_id = 0
- group_size = 1
- config = train_config
- data_sink = (args.device_target == "GPU")
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=False)
- if args.is_distributed:
- init('nccl')
- rank_id = get_rank()
- group_size = get_group_size()
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
-
- with open(config.DataConfig.labels_path) as label_file:
- labels = json.load(label_file)
-
- ds_train = create_dataset(audio_conf=config.DataConfig.SpectConfig,
- manifest_filepath=config.DataConfig.train_manifest,
- labels=labels, normalize=True, train_mode=True,
- batch_size=config.DataConfig.batch_size, rank=rank_id, group_size=group_size)
- steps_size = ds_train.get_dataset_size()
-
- lr = get_lr(lr_init=config.OptimConfig.learning_rate, total_epochs=config.TrainingConfig.epochs,
- steps_per_epoch=steps_size)
- lr = Tensor(lr)
-
- deepspeech_net = DeepSpeechModel(batch_size=config.DataConfig.batch_size,
- rnn_hidden_size=config.ModelConfig.hidden_size,
- nb_layers=config.ModelConfig.hidden_layers,
- labels=labels,
- rnn_type=config.ModelConfig.rnn_type,
- audio_conf=config.DataConfig.SpectConfig,
- bidirectional=True,
- device_target=args.device_target)
-
- loss_net = NetWithLossClass(deepspeech_net)
- weights = ParameterTuple(deepspeech_net.trainable_params())
-
- optimizer = Adam(weights, learning_rate=config.OptimConfig.learning_rate, eps=config.OptimConfig.epsilon,
- loss_scale=config.OptimConfig.loss_scale)
- train_net = TrainOneStepCell(loss_net, optimizer)
- train_net.set_train(True)
- if args.pre_trained_model_path != '':
- param_dict = load_checkpoint(args.pre_trained_model_path)
- load_param_into_net(train_net, param_dict)
- print('Successfully loading the pre-trained model')
-
- model = Model(train_net)
- callback_list = [TimeMonitor(steps_size), LossMonitor()]
-
- if args.is_distributed:
- config.CheckpointConfig.ckpt_file_name_prefix = config.CheckpointConfig.ckpt_file_name_prefix + str(get_rank())
- config.CheckpointConfig.ckpt_path = os.path.join(config.CheckpointConfig.ckpt_path,
- 'ckpt_' + str(get_rank()) + '/')
- config_ck = CheckpointConfig(save_checkpoint_steps=1,
- keep_checkpoint_max=config.CheckpointConfig.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix=config.CheckpointConfig.ckpt_file_name_prefix,
- directory=config.CheckpointConfig.ckpt_path, config=config_ck)
- callback_list.append(ckpt_cb)
- model.train(config.TrainingConfig.epochs, ds_train, callbacks=callback_list, dataset_sink_mode=data_sink)
|