|
- /**
- * Copyright 2019 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef MINDSPORE_CCSRC_IR_META_TENSOR_H_
- #define MINDSPORE_CCSRC_IR_META_TENSOR_H_
-
- #include <utility>
- #include <vector>
- #include <memory>
- #include <string>
- #include "device/device_address.h"
-
- #include "pybind11/numpy.h"
- #include "pybind11/pybind11.h"
-
- #include "Eigen/Core"
- #include "ir/base.h"
- #include "ir/dtype.h"
- #include "utils/log_adapter.h"
- #include "utils/convert_utils.h"
- #include "utils/hashing.h"
-
- namespace py = pybind11;
-
- using float16 = Eigen::half;
-
- namespace pybind11 {
-
- namespace detail {
-
- // Similar to enums in `pybind11/numpy.h`. Determined by doing:
- // python3 -c 'import numpy as np; print(np.dtype(np.float16).num)'
- constexpr int NPY_FLOAT16 = 23;
-
- template <typename T>
- struct npy_scalar_caster {
- PYBIND11_TYPE_CASTER(T, _("PleaseOverride"));
- using Array = array_t<T>;
-
- bool load(handle src, bool convert) {
- // Taken from Eigen casters. Permits either scalar dtype or scalar array.
- handle type = dtype::of<T>().attr("type");
- if (!convert && !isinstance<Array>(src) && !isinstance(src, type)) return false;
-
- Array tmp = Array::ensure(src);
- if (tmp && tmp.size() == 1 && tmp.ndim() == 0) {
- this->value = *tmp.data();
- return true;
- }
-
- return false;
- }
-
- static handle cast(T src, return_value_policy, handle) {
- Array tmp({1});
- tmp.mutable_at(0) = src;
- tmp.resize({});
-
- // You could also just return the array if you want a scalar array.
- object scalar = tmp[tuple()];
- return scalar.release();
- }
- };
-
- template <>
- struct npy_format_descriptor<float16> {
- static constexpr auto name = "float16";
- static pybind11::dtype dtype() {
- handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16);
- return reinterpret_borrow<pybind11::dtype>(ptr);
- }
- virtual ~npy_format_descriptor<float16>() {}
- };
-
- template <>
- struct type_caster<float16> : public npy_scalar_caster<float16> {
- static constexpr auto name = "float16";
- };
-
- } // namespace detail
- } // namespace pybind11
-
- using mindspore::device::DeviceAddress;
- using DeviceAddressPtr = std::shared_ptr<mindspore::device::DeviceAddress>;
- // brief mindspore namespace.
- //
- // mindspore namespace is the top level namespace of Mindsporeession project.
- // Other namespace should be a sub namespace of mindspore namespace in the ME project.
- namespace mindspore {
-
- // brief mindspore::tensor namespace
- //
- // A sub namespace in ME to support tensor related definition.
- namespace tensor {
-
- // brief Device info of Tensor
- //
- // Includes the format and data type of a tensor.
- struct DeviceInfo {
- explicit DeviceInfo(std::string format = "DefaultFormat", TypePtr data_type = nullptr)
- : format_(std::move(format)), data_type_(std::move(data_type)) {}
- std::string format_ = "DefaultFormat";
- TypePtr data_type_ = nullptr;
- };
-
- // brief Metadata of Tensor
- //
- // Includes the metadata information of a tensor, such as data type, shape
- // and so on. But it does not contain values of a tensor.
- class MetaTensor : public Value {
- public:
- // Construction
- MetaTensor();
-
- // brief Constructs a meta tensor of a tensor having data_type data and shape.
- //
- // The constructed MetaTensor is not a Tensor, but it has the data type and shape
- // information of a Tensor. The following codes will create a 2x3 float
- // param data_type The data type of the tensor.
- // param shape The shape of the tensor.
- MetaTensor(const TypeId data_type, const std::vector<int> &shape);
-
- MetaTensor(const TypePtr &type_ptr, const py::tuple &shape);
- // brief Constructs a MetaTensor object from an existing MetaTensor instance.
- //
- // The constructed MetaTensor object will have the same data type and shape as the
- // meta_tensor.
- //
- // param meta_tensor An existing MetaTensor object.
- MetaTensor(const MetaTensor &meta_tensor);
- ~MetaTensor() override = default;
- MS_DECLARE_PARENT(MetaTensor, Value)
-
- // brief Overloads operator = for MetaTensor.
- //
- // The constructed MetaTensor object has the same type and shape with meta_tensor.
- //
- // param meta_tensor An existing MetaTensor object.
- virtual MetaTensor &operator=(const MetaTensor &meta_tensor);
-
- // brief Compares two MetaTensor objects.
- //
- // The constructed MetaTensor object has the same type and shape with meta_tensor.
- //
- // param meta_tensor The MetaTensor object to be compared.
- // return true: If having same type and shape, return true, or return false.
- virtual bool operator==(const MetaTensor &meta_tensor) const;
-
- // brief Returns the data type of the tensor in its MetaTensor.
- //
- // All the types are defined in "ir/dtype.h".
- TypePtr Dtype() const;
- TypeId data_type() const { return data_type_; }
- std::string ToString() const override;
- std::string DumpText() const override;
- // brief Sets the data type of a tensor in its MetaTensor.
- //
- // param data_type The data type of the tensor to be set.
- virtual TypeId set_data_type(const TypeId data_type) {
- data_type_ = data_type;
- return data_type_;
- }
- virtual TypePtr SetDtype(const TypePtr type_ptr);
- // brief Get tensor's shape.
- //
- // The shape of a tensor is stored in a vector<int>. Each
- // element of the vector represents the size of a dimension of the tensor.
- // The order of each element in the vector is as same as the the dimension's
- // order it represents.
- //
- // return A const vector<int> which represents the shape of the tensor.
- std::vector<int> shape() const { return shape_; }
-
- // brief Sets the shape of a tensor.
- //
- // The shape of a tensor is stored in a vector<int>. Each
- // element of the vector represents the size of a dimension of the tensor.
- // The order of each element in the vector is as same as the the dimension's
- // order it represents.
- //
- // param shape The shape of the tensor.
- // return The shape's size.
- size_t set_shape(const std::vector<int> &shape) {
- this->shape_ = shape;
- return shape_.size();
- }
-
- // Get tensor's device info.
- DeviceInfo device_info() const { return device_info_; }
-
- // Set tensor's device info.
- void set_device_info(const DeviceInfo &device_info) { device_info_ = device_info; }
-
- void SetDeviceInfo(const std::string &format, const TypePtr &data_type);
-
- // Get the size of a given dimension by its index number.
- int DimensionSize(size_t index) const;
-
- // Get total number of elements in a tensor.
- int ElementsNum() const;
-
- std::size_t hash() const override {
- std::size_t hash_value = std::hash<int>{}(SizeToInt(data_type_));
- hash_value = hash_combine(hash_value, std::hash<size_t>{}(shape_.size()));
- // hash all elements may costly, so only take at most 4 elements into account based on
- // some experiments.
- for (size_t i = 0; (i < shape_.size()) && (i < 4); ++i) {
- hash_value = hash_combine(hash_value, (std::hash<int>{}(shape_[i])));
- }
- return hash_value;
- }
- bool operator==(const Value &other) const override {
- if (other.isa<MetaTensor>()) {
- auto other_ = static_cast<const MetaTensor &>(other);
- return *this == other_;
- } else {
- return false;
- }
- }
-
- protected:
- // brief Data type of the tensor.
- //
- // All support data type is in Number Types of [TypeId],
- // including [kNumberTypeBool], [kNumberTypeInt],
- // [kNumberTypeUInt32], [kNumberTypeFloat32] and [kNumberTypeFloat64].
- TypeId data_type_;
-
- // brief Shape of the tensor.
- //
- // A std::vector<int> container is used to store the shape of a tensor.
- // Each element of the vector represents the size of a dimension of the tensor.
- // The order of each element in the vector is as same as the the dimension's
- // order it represents. If the dimension size is not set, its value will be -1.
- std::vector<int> shape_;
-
- // brief Device info of Tensor
- //
- // Includes the format and data type of a tensor on device.
- DeviceInfo device_info_;
- };
-
- // Tensor entity class
- class Tensor : public MetaTensor {
- public:
- Tensor() = default;
- abstract::AbstractBasePtr ToAbstract() override;
- // brief Constructor for Python.
- //
- // param type_ptr [TypePty] Data type of the tensor.
- // param py_shape [py::tuple] The shape represented by py::tuple of the tensor.
- Tensor(const TypePtr &type_ptr, const py::tuple &shape);
-
- // brief Constructor for C++.
- //
- // param data_type [TypeId] Data type of the tensor.
- // param shape The shape represented by std::vector<int> of the tensor.
- Tensor(TypeId data_type, const std::vector<int> &shape);
-
- // brief Constructor for Python.
- //
- // param input [py::array] Data value of the tensor.
- // param data_type [TypeId] Data type of the tensor.
- explicit Tensor(const py::array &input, const TypePtr &data_type = nullptr);
-
- // brief Constructor
- //
- // param input [py::list] the data for tensor
- // param data_type [TypeId] data type
- explicit Tensor(const py::list &input, const TypePtr &data_type = nullptr);
-
- // brief Constructor
- //
- // param input [py::tuple] the data for tensor
- // param data_type [TypeId] data type
- explicit Tensor(const py::tuple &input, const TypePtr &data_type = nullptr);
-
- // brief Constructor
- //
- // param input [py::float_] the data for tensor
- // param data_type [TypeId] data type
- explicit Tensor(const py::float_ &input, const TypePtr &data_type = nullptr);
-
- // brief Constructor
- //
- // param input [py::int_] the data for tensor
- // param data_type [TypeId] data type
- explicit Tensor(const py::int_ &input, const TypePtr &data_type = nullptr);
-
- // brief Constructor
- //
- // param input [Tensor] the data for tensor
- // param data_type [TypeId] data type
- Tensor(const Tensor &tensor, const TypePtr &data_type = nullptr);
-
- ~Tensor() override = default;
-
- MS_DECLARE_PARENT(Tensor, MetaTensor);
-
- // brief Overloads operator = for Tensor.
- //
- // The constructed Tensor object has the same type and shape with tensor.
- //
- // param tensor An existing Tensor object.
- Tensor &operator=(const Tensor &tensor);
-
- // brief Compares two Tensor objects.
- //
- // Compare two tensor objects to see if they have same data type, shape and
- // data value.
- //
- // param tensor The Tensor object to be compared.
- // return true: If having same type, shape and data, return true, or return false.
- bool operator==(const Tensor &tensor) const;
-
- // It is different from 'operator==' which just compare shape/type/address, it do real value comparison.
- bool ValueEqual(const Tensor &other) const;
-
- // It is different from 'operator==' which just compare shape/type/address, it do real value comparison.
- bool ValueEqualPy(const py::object &other) const;
-
- bool operator==(const Value &other) const override {
- if (other.isa<Tensor>()) {
- auto other_ = static_cast<const Tensor &>(other);
- return *this == other_;
- } else {
- return false;
- }
- }
-
- // brief Gets tensor's dimension
- //
- // return The number of dimensions of the tensor data.
- int DataDim() const;
-
- // brief Getting tensor data size
- //
- // return The total number of elements of the tensor data.
- int DataSize() const;
-
- // brief Get tensor's shape
- //
- // return [py::tuple] The tensor's shape
- py::tuple GetPyTupleShape() const;
-
- // brief Tensor's data value.
- //
- // return [py::array] The tensor's data in py::array.
- py::array data() const;
-
- // brief Get the data type fo the tensor for C++
- //
- // return [int] The tensor's data type will be cast to int to return.
- int data_type_c() const;
-
- // brief Get the tensor's shape for C++
- //
- // return [std::vector<int>]
- std::vector<int> shape_c(void) const;
-
- // brief Get Tensor data pointer for c++ type
- //
- // param writable true if writable, false if read only
- // return The pointer to the object
- void *data_c(bool writable = false);
-
- // brief Get data type from tensor data.
- //
- // param buf The buffer info of the py::array data.
- // return The [TypeId] of the tensor data.
- TypeId GetDataType(const py::buffer_info &buf) const;
-
- // brief Sets the data type of a tensor.
- //
- // param data_type The data type of the tensor to be set.
- //
- TypeId set_data_type(const TypeId data_type) override;
- TypePtr SetDtype(const TypePtr type_ptr) override;
- std::string GetShapeAndDataTypeInfo() const;
- std::string ToString() const override;
- std::string ToStringRepr() const;
- py::array data_; // < Tensor's data value
- const bool parse_info_ = true;
-
- private:
- // brief init tensor
- //
- // param input [py::array] the data for tensor
- // param data_type [TypeId] data type
- // return true if succeed, false if failed.
- void init(const py::array &input, const TypeId &data_type);
- void init(const py::array &input, const TypePtr &type_ptr);
-
- // brief init tensor attribute
- //
- // param data_type [TypeId] Data type of the tensor.
- // param shape [py::array] The shape of the tensor.
- // return true if succeed, false if failed.
- void init(TypeId data_type, const std::vector<int> &shape, py::array *data);
-
- bool convert_data(const py::array &in, const TypeId in_data_type, py::array *out, const TypeId out_data_type);
-
- public:
- bool is_dirty() const { return dirty_; }
- void set_dirty(const bool dirty) { dirty_ = dirty; }
- DeviceAddressPtr device_address() const { return device_address_; }
- void set_device_address(const DeviceAddressPtr &device_address) { device_address_ = device_address; }
- py::array data_sync();
-
- private:
- bool dirty_{true};
- DeviceAddressPtr device_address_{nullptr};
- };
-
- using TensorPtr = std::shared_ptr<Tensor>;
- using TensorPtrList = std::vector<std::shared_ptr<Tensor>>;
-
- } // namespace tensor
- } // namespace mindspore
-
- #endif // MINDSPORE_CCSRC_IR_META_TENSOR_H_
|