|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import pytest
- import os
- import time
- import shutil
- import random
- import numpy as np
- import mindspore.nn as nn
- import mindspore.context as context
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
- from mindspore.train.summary.summary_record import SummaryRecord
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- CUR_DIR = os.getcwd()
- SUMMARY_DIR_ME = CUR_DIR + "/test_me_summary_event_file/"
- SUMMARY_DIR_ME_TEMP = CUR_DIR + "/test_me_temp_summary_event_file/"
-
-
- def clean_environment_file(srcDir):
- if os.path.exists(srcDir):
- ls = os.listdir(srcDir)
- for line in ls:
- filePath = os.path.join(srcDir, line)
- os.remove(filePath)
- os.removedirs(srcDir)
-
-
- def save_summary_events_file(srcDir, desDir):
- if not os.path.exists(desDir):
- print("-- create desDir")
- os.makedirs(desDir)
-
- ls = os.listdir(srcDir)
- for line in ls:
- filePath = os.path.join(srcDir, line)
- if os.path.isfile(filePath):
- print("-- move events file : {}".format(filePath))
- shutil.copy(filePath, desDir)
- os.remove(filePath)
- os.removedirs(srcDir)
-
-
- class SummaryNet(nn.Cell):
- def __init__(self, tag_tuple=None, scalar=1):
- super(SummaryNet, self).__init__()
- self.summary_s = P.ScalarSummary()
- self.summary_i = P.ImageSummary()
- self.summary_t = P.TensorSummary()
- self.histogram_summary = P.HistogramSummary()
- self.add = P.TensorAdd()
- self.tag_tuple = tag_tuple
- self.scalar = scalar
-
- def construct(self, x, y):
- self.summary_i("image", x)
- self.summary_s("x1", x)
- z = self.add(x, y)
- self.summary_t("z1", z)
- self.histogram_summary("histogram", z)
- return z
-
-
- def train_summary_record_scalar_for_1(test_writer, steps, fwd_x, fwd_y):
- net = SummaryNet()
- out_me_dict = {}
- for i in range(0, steps):
- x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
- y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
- out_put = net(x, y)
- test_writer.record(i)
- print("-----------------output: %s-------------\n", out_put.asnumpy())
- out_me_dict[i] = out_put.asnumpy()
- return out_me_dict
-
-
- def me_scalar_summary(steps, tag=None, value=None):
- test_writer = SummaryRecord(SUMMARY_DIR_ME_TEMP)
-
- x = Tensor(np.array([1.1]).astype(np.float32))
- y = Tensor(np.array([1.2]).astype(np.float32))
-
- out_me_dict = train_summary_record_scalar_for_1(test_writer, steps, x, y)
-
- test_writer.close()
- return out_me_dict
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_scalarsummary_scalar1_step10_summaryrecord1():
- clean_environment_file(SUMMARY_DIR_ME_TEMP)
- output_dict = me_scalar_summary(10)
- print("test_scalarsummary_scalar1_step10_summaryrecord1 \n",output_dict)
- save_summary_events_file(SUMMARY_DIR_ME_TEMP, SUMMARY_DIR_ME)
- clean_environment_file(SUMMARY_DIR_ME)
|