|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """grad reducer cell for distributed training"""
- from mindspore import context
- from mindspore.nn.cell import Cell
- from mindspore.communication.management import GlobalComm, get_group_size
- from mindspore.common.tensor import RowTensor
- from mindspore.ops import functional as F, composite as C, operations as P
- from mindspore.ops.operations.comm_ops import AllReduce, AllGather
- from mindspore.parallel._auto_parallel_context import auto_parallel_context
- import mindspore.common.dtype as mstype
-
- reduce_opt = C.MultitypeFuncGraph("reduce_opt")
-
-
- def _init_allreduce_operators(length, split_indices):
- """ initialize allreduce communication operators"""
- group = 1
- fusion = ()
- for i in range(length):
- fusion = fusion + (group,)
- if split_indices[group - 1] <= i + 1:
- if group >= len(split_indices):
- continue
- group = group + 1
- index = tuple(range(1, length + 1))
- op_list = ()
- for i in range(length):
- op = AllReduce('sum', GlobalComm.WORLD_COMM_GROUP)
- op.add_prim_attr('fusion', fusion[i])
- op.add_prim_attr('index', index[i])
- op_list = op_list + (op,)
- return op_list
-
-
- @reduce_opt.register("Number", "Bool", "Function", "Function", "Bool", "Tensor")
- def _tensors_allreduce(degree, mean, allgather, allreduce, allreduce_filter, grad):
- """
- Apply allreduce on gradient.
-
- Args:
- degree (int): The mean coefficient.
- mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
- allgather (Primitive): The communication operator for sparse gradients.
- allreduce (Primitive): The communication operator for gradients.
- allreduce_filter (bool): When it is true, allreduce would apply.
- grad (Tensor): The gradient tensor before operation.
-
- Returns:
- Tensor, the gradient tensor after operation.
- """
- if allreduce_filter:
- grad = allreduce(grad)
- if mean:
- degree = F.scalar_cast(degree, F.dtype(grad))
- cast_op = P.Cast()
- mul_op = P.Mul()
- grad = mul_op(grad, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(grad)))
- return grad
- return grad
-
-
- @reduce_opt.register("Number", "Bool", "Function", "Function", "Bool", "Tensor", "Bool")
- def _tensors_allreduce_ps(degree, mean, allgather, allreduce, allreduce_filter, grad, ps_parameter):
- """
- Apply allreduce on gradient.
-
- Args:
- degree (int): The mean coefficient.
- mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
- allgather (Primitive): The communication operator for sparse gradients.
- allreduce (Primitive): The communication operator for gradients.
- allreduce_filter (bool): When it is true, allreduce would apply.
- grad (Tensor): The gradient tensor before operation.
- ps_parameter (bool): Use parameter server or not.
-
- Returns:
- Tensor, the gradient tensor after operation.
- """
- if ps_parameter:
- return grad
-
- if allreduce_filter:
- grad = allreduce(grad)
- if mean:
- degree = F.scalar_cast(degree, F.dtype(grad))
- cast_op = P.Cast()
- mul_op = P.Mul()
- grad = mul_op(grad, cast_op(F.scalar_to_array(1.0/degree), F.dtype(grad)))
- return grad
- return grad
-
-
- @reduce_opt.register("Number", "Bool", "Function", "Function", "Bool", "RowTensor")
- def _tensors_allreduce_with_sparse(degree, mean, allgather, allreduce, allreduce_filter, grad):
- """
- Apply allgather on gradient instead of allreduce for sparse feature.
- Allgather is a communication operation used for distributed deep learning.
-
- Args:
- degree (int): The mean coefficient.
- mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
- allgather (Primitive): The communication operator for sparse gradients.
- allreduce (Primitive): The communication operator for gradients.
- allreduce_filter (bool): When it is true, allgather would apply.
- grad (tuple): The indices, gradient tensor and tensor_shape before operation.
-
- Returns:
- RowTensor, the gradient after operation.
- """
- if allreduce_filter:
- indices = allgather(grad.indices)
- dout = allgather(grad.values)
- if mean:
- degree = F.scalar_cast(degree, F.dtype(grad.values))
- cast_op = P.Cast()
- mul_op = P.Mul()
- dout = mul_op(dout, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(dout)))
- grad = RowTensor(indices, dout, grad.dense_shape)
- return grad
-
-
- @reduce_opt.register("Number", "Bool", "Function", "Function", "Bool", "RowTensor", "Bool")
- def _tensors_allreduce_with_sparse_ps(degree, mean, allgather, allreduce, allreduce_filter, grad, ps_parameter):
- """
- Apply allgather on gradient instead of allreduce for sparse feature.
- Allgather is a communication operation used for distributed deep learning.
-
- Args:
- degree (int): The mean coefficient.
- mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
- allgather (Primitive): The communication operator for sparse gradients.
- allreduce (Primitive): The communication operator for gradients.
- allreduce_filter (bool): When it is true, allgather would apply.
- grad (tuple): The indices, gradient tensor and tensor_shape before operation.
- ps_parameter (bool): Use parameter server or not.
-
- Returns:
- RowTensor, the gradient after operation.
- """
- if ps_parameter:
- return grad
-
- if allreduce_filter:
- indices = allgather(grad.indices)
- dout = allgather(grad.values)
- if mean:
- degree = F.scalar_cast(degree, F.dtype(grad.values))
- cast_op = P.Cast()
- mul_op = P.Mul()
- dout = mul_op(dout, cast_op(F.scalar_to_array(1.0 / degree), F.dtype(dout)))
- grad = RowTensor(indices, dout, grad.dense_shape)
- return grad
-
-
- _get_datatype = C.MultitypeFuncGraph("_get_datatype")
-
-
- @_get_datatype.register("Tensor")
- def _tensors_get_datatype(grad):
- """
- Acquire gradient datatype.
-
- Args:
- grad (Tensor): The gradient tensor before operation.
-
- Returns:
- mstype, the datatype of gradient.
- """
- return F.dtype(grad)
-
-
- @_get_datatype.register("RowTensor")
- def _tensors_get_datatype_with_sparse(grad):
- """
- Acquire gradient datatype.
-
- Args:
- grad (RowTensor): The gradient before operation.
-
- Returns:
- mstype, the datatype of gradient.
- """
- return F.dtype(grad.values)
-
-
- _cast_datatype = C.MultitypeFuncGraph("_cast_datatype")
-
-
- @_cast_datatype.register("TypeType", "Tensor")
- def _tensors_cast_datatype(datatype, grad):
- """
- Cast gradient to datatype.
-
- Args:
- datatype (mstype): the destination datatype of gradient.
- grad (Tensor): The gradient tensor before operation.
-
- Returns:
- Tensor, the gradient tensor after operation.
- """
- return F.cast(grad, datatype)
-
-
- @_cast_datatype.register("TypeType", "RowTensor")
- def _tensors_cast_datatype_with_sparse(datatype, grad):
- """
- Cast gradient to datatype.
-
- Args:
- datatype (mstype): the destination datatype of gradient.
- grad (RowTensor): The gradient before operation.
-
- Returns:
- RowTensor, the gradient after operation.
- """
- dout = F.cast(grad.values, datatype)
- return RowTensor(grad.indices, dout, grad.dense_shape)
-
-
- class DistributedGradReducer(Cell):
- """
- A distributed optimizer.
-
- Constructs a gradient reducer Cell, which applies communication and average operations on
- single-process gradient values.
-
- Args:
- parameters (list): the parameters to be updated.
- mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients. Default: False.
- degree (int): The mean coefficient. Usually it equals to device number. Default: None.
-
- Raises:
- ValueError: If degree is not a int or less than 0.
-
- Examples:
- >>> from mindspore.communication import init, get_group_size
- >>> from mindspore.ops import composite as C
- >>> from mindspore.ops import operations as P
- >>> from mindspore.ops import functional as F
- >>> from mindspore import context
- >>> from mindspore import nn
- >>> from mindspore import ParallelMode, ParameterTuple
- >>>
- >>> device_id = int(os.environ["DEVICE_ID"])
- >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True,
- >>> device_id=int(device_id))
- >>> init()
- >>> context.reset_auto_parallel_context()
- >>> context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL)
- >>>
- >>>
- >>> class TrainingWrapper(nn.Cell):
- >>> def __init__(self, network, optimizer, sens=1.0):
- >>> super(TrainingWrapper, self).__init__(auto_prefix=False)
- >>> self.network = network
- >>> self.network.add_flags(defer_inline=True)
- >>> self.weights = optimizer.parameters
- >>> self.optimizer = optimizer
- >>> self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
- >>> self.sens = sens
- >>> self.reducer_flag = False
- >>> self.grad_reducer = None
- >>> self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
- >>> if self.parallel_mode in [ParallelMode.DATA_PARALLEL,
- >>> ParallelMode.HYBRID_PARALLEL]:
- >>> self.reducer_flag = True
- >>> if self.reducer_flag:
- >>> mean = context.get_auto_parallel_context("mirror_mean")
- >>> if mean.get_device_num_is_set():
- >>> degree = context.get_auto_parallel_context("device_num")
- >>> else:
- >>> degree = get_group_size()
- >>> self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree)
- >>>
- >>> def construct(self, *args):
- >>> weights = self.weights
- >>> loss = self.network(*args)
- >>> sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
- >>> grads = self.grad(self.network, weights)(*args, sens)
- >>> if self.reducer_flag:
- >>> # apply grad reducer on grads
- >>> grads = self.grad_reducer(grads)
- >>> return F.depend(loss, self.optimizer(grads))
- >>>
- >>> network = Net()
- >>> optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.1, momentum=0.9)
- >>> train_cell = TrainingWrapper(network, optimizer)
- >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- >>> label = Tensor(np.zeros([16, 16]).astype(np.float32))
- >>> grads = train_cell(inputs, label)
- """
-
- def __init__(self, parameters, mean=True, degree=None):
- super(DistributedGradReducer, self).__init__(auto_prefix=False)
- self.map_ = C.Map()
- if degree is None:
- self.degree = get_group_size()
- else:
- if not isinstance(degree, int) or degree <= 0:
- raise ValueError("Parameter 'degree' in DistributedGradReducer should large than 0 and be int")
- self.degree = degree
- self.mean = mean
- self.allreduce_filter = tuple(x.layerwise_parallel is False for x in parameters)
- is_parallel_optimizer = context.get_auto_parallel_context("enable_parallel_optimizer")
- split_indices = auto_parallel_context().get_all_reduce_fusion_split_indices()
- if is_parallel_optimizer and split_indices:
- self.split_fusion = True
- self.op_list = _init_allreduce_operators(len(parameters), split_indices)
- else:
- self.split_fusion = False
- self.allreduce = AllReduce().add_prim_attr('fusion', 1)
- self.allgather = AllGather(GlobalComm.WORLD_COMM_GROUP)
- ps_filter = lambda x: x.is_param_ps
- self.ps_parameters = tuple(ps_filter(x) for x in parameters)
- self.enable_parameter_server = any(self.ps_parameters)
-
- def construct(self, grads):
- """
- In some circumstances, the data precision of grads could be mixed with float16 and float32. Thus, the
- result of AllReduce is unreliable. To solve the problem, grads should be cast to float32 before AllReduce,
- and cast back after the operation.
-
- Args:
- grads (Union[Tensor, tuple[Tensor]]): The gradient tensor or tuple before operation.
-
- Returns:
- new_grads (Union[Tensor, tuple[Tensor]]), the gradient tensor or tuple after operation.
- """
- datatypes = self.map_(F.partial(_get_datatype), grads)
- grads = self.map_(F.partial(_cast_datatype, mstype.float32), grads)
- if self.split_fusion:
- if self.enable_parameter_server:
- new_grad = self.map_(F.partial(reduce_opt, self.degree, self.mean, self.allgather),
- self.op_list, self.allreduce_filter, grads, self.ps_parameters)
- else:
- new_grad = self.map_(F.partial(reduce_opt, self.degree, self.mean, self.allgather),
- self.op_list, self.allreduce_filter, grads)
- else:
- if self.enable_parameter_server:
- new_grad = self.map_(F.partial(reduce_opt, self.degree, self.mean, self.allgather,
- self.allreduce), self.allreduce_filter, grads, self.ps_parameters)
- else:
- new_grad = self.map_(F.partial(reduce_opt, self.degree, self.mean, self.allgather,
- self.allreduce), self.allreduce_filter, grads)
- new_grad = self.map_(F.partial(_cast_datatype), datatypes, new_grad)
- return new_grad
|