|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """PROXIMAL_ADA_GRAD"""
- from mindspore.ops import functional as F, composite as C, operations as P
- from mindspore.common import Tensor
- import mindspore.common.dtype as mstype
- from mindspore._checkparam import Validator as validator
- from mindspore._checkparam import Rel
- from .optimizer import Optimizer
-
- _proximal_ada_grad_opt = C.MultitypeFuncGraph("proximal_ada_grad_opt")
-
- @_proximal_ada_grad_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "RowTensor", "Tensor",
- "Tensor")
- def _tensor_run_opt_with_sparse(opt, sparse_opt, l1, l2, learning_rate, gradient, weight, accum):
- """Apply sparse proximal_ada_grad optimizer to the weight parameter."""
- success = True
- success = F.depend(success, sparse_opt(weight, accum, learning_rate, l1, l2, gradient.values, gradient.indices))
- return success
-
-
- @_proximal_ada_grad_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
- def _tensor_run_opt(opt, sparse_opt, l1, l2, learning_rate, gradient, weight, accum):
- """Apply proximal_ada_grad optimizer to the weight parameter."""
- success = True
- success = F.depend(success, opt(weight, accum, learning_rate, l1, l2, gradient))
- return success
-
-
- def _check_param_value(accum, l1, l2, use_locking, prim_name=None):
- """Check inputs param."""
- validator.check_value_type("accum", accum, [float], prim_name)
- validator.check_value_type("l1", l1, [float], prim_name)
- validator.check_value_type("l2", l2, [float], prim_name)
- validator.check_value_type("use_locking", use_locking, [bool], prim_name)
- validator.check_number_range("accum", accum, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
- validator.check_number_range("l1", l1, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
- validator.check_number_range("l2", l2, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
-
-
- class ProximalAdagrad(Optimizer):
- """
- Implement the ProximalAdagrad algorithm with ApplyProximalAdagrad Operator.
-
- ProximalAdagrad is an online Learning and Stochastic Optimization.
- Refer to paper `Efficient Learning using Forward-Backward Splitting
- <http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_.
-
- Note:
- When separating parameter groups, the weight decay in each group will be applied on the parameters if the
- weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
- on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
-
- To improve parameter groups performance, the customized order of parameters can be supported.
-
- The sparse strategy is applied while the SparseGatherV2 operator being used for forward network.
- The sparse feature is under continuous development. The sparse
- behavior is currently performed on the CPU.
-
- Args:
- params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
- the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
- "lr", "weight_decay" and "order_params" are the keys can be parsed.
-
- - params: Required. The value should be a list of `Parameter`.
-
- - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
- If not, the `learning_rate` in the API will be used.
-
- - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
- will be used. If not, the `weight_decay` in the API will be used.
-
- - order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
- the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
- in the value of 'order_params' should be in one of group parameters.
-
- accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1.
- learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
- When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
- the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
- use dynamic learning rate, the i-th learning rate will be calculated during the process of training
- according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
- dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
- equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
- Default: 0.001.
- l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
- l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
- use_locking (bool): If True use locks for update operation. Default: False.
- loss_scale (float): Value for the loss scale. It should be greater than 0.0. Default: 1.0.
- weight_decay (float): Weight decay value to multiply weight, must be zero or positive value. Default: 0.0.
-
- Inputs:
- - **grads** (tuple[Tensor]) - The gradients of `params` in optimizer, the shape is as same as the `params`
- in optimizer.
-
- Outputs:
- Tensor[bool], the value is True.
-
- Examples:
- >>> net = Net()
- >>> #1) All parameters use the same learning rate and weight decay
- >>> optim = nn.ProximalAdagrad(params=net.trainable_params())
- >>>
- >>> #2) Use parameter groups and set different values
- >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
- >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
- >>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
- >>> {'params': no_conv_params, 'lr': 0.01},
- >>> {'order_params': net.trainable_params()}]
- >>> optim = nn.ProximalAdagrad(group_params, learning_rate=0.1, weight_decay=0.0)
- >>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
- >>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
- >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
- >>>
- >>> loss = nn.SoftmaxCrossEntropyWithLogits()
- >>> model = Model(net, loss_fn=loss, optimizer=optim)
- """
-
- def __init__(self, params, accum=0.1, learning_rate=0.001, l1=0.0, l2=0.0,
- use_locking=False, loss_scale=1.0, weight_decay=0.0):
- super(ProximalAdagrad, self).__init__(learning_rate, params, weight_decay, loss_scale)
- _check_param_value(accum, l1, l2, use_locking, self.cls_name)
- self.accum = self.parameters.clone(prefix="accum", init=accum)
- self.l1 = Tensor(l1, mstype.float32)
- self.l2 = Tensor(l2, mstype.float32)
- self.hyper_map = C.HyperMap()
- self.opt = P.ApplyProximalAdagrad(use_locking=use_locking)
- self.sparse_opt = P.FusedSparseProximalAdagrad(use_locking=use_locking)
-
- def construct(self, grads):
- params = self.parameters
- accum = self.accum
- grads = self.decay_weight(grads)
- grads = self.scale_grad(grads)
- lr = self.get_lr()
- if self.is_group_lr:
- success = self.map_(F.partial(_proximal_ada_grad_opt, self.opt, self.sparse_opt, self.l1, self.l2), lr,
- grads, params, accum)
- else:
- success = self.map_(F.partial(_proximal_ada_grad_opt, self.opt, self.sparse_opt, self.l1, self.l2, lr),
- grads, params, accum)
- return success
|