|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """
- Testing RandomSharpness op in DE
- """
- import numpy as np
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.py_transforms
- import mindspore.dataset.vision.py_transforms as F
- import mindspore.dataset.vision.c_transforms as C
- from mindspore import log as logger
- from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5, \
- config_get_set_seed, config_get_set_num_parallel_workers
-
- DATA_DIR = "../data/dataset/testImageNetData/train/"
- MNIST_DATA_DIR = "../data/dataset/testMnistData"
-
- GENERATE_GOLDEN = False
-
-
- def test_random_sharpness_py(degrees=(0.7, 0.7), plot=False):
- """
- Test RandomSharpness python op
- """
- logger.info("Test RandomSharpness python op")
-
- # Original Images
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
- F.Resize((224, 224)),
- F.ToTensor()])
-
- ds_original = data.map(operations=transforms_original, input_columns="image")
-
- ds_original = ds_original.batch(512)
-
- for idx, (image, _) in enumerate(ds_original.create_tuple_iterator(output_numpy=True)):
- if idx == 0:
- images_original = np.transpose(image, (0, 2, 3, 1))
- else:
- images_original = np.append(images_original,
- np.transpose(image, (0, 2, 3, 1)),
- axis=0)
-
- # Random Sharpness Adjusted Images
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
-
- py_op = F.RandomSharpness()
- if degrees is not None:
- py_op = F.RandomSharpness(degrees)
-
- transforms_random_sharpness = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
- F.Resize((224, 224)),
- py_op,
- F.ToTensor()])
-
- ds_random_sharpness = data.map(operations=transforms_random_sharpness, input_columns="image")
-
- ds_random_sharpness = ds_random_sharpness.batch(512)
-
- for idx, (image, _) in enumerate(ds_random_sharpness.create_tuple_iterator(output_numpy=True)):
- if idx == 0:
- images_random_sharpness = np.transpose(image, (0, 2, 3, 1))
- else:
- images_random_sharpness = np.append(images_random_sharpness,
- np.transpose(image, (0, 2, 3, 1)),
- axis=0)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
-
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
- if plot:
- visualize_list(images_original, images_random_sharpness)
-
-
- def test_random_sharpness_py_md5():
- """
- Test RandomSharpness python op with md5 comparison
- """
- logger.info("Test RandomSharpness python op with md5 comparison")
- original_seed = config_get_set_seed(5)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # define map operations
- transforms = [
- F.Decode(),
- F.RandomSharpness((20.0, 25.0)),
- F.ToTensor()
- ]
- transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
-
- # Generate dataset
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
- data = data.map(operations=transform, input_columns=["image"])
-
- # check results with md5 comparison
- filename = "random_sharpness_py_01_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore configuration
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
-
- def test_random_sharpness_c(degrees=(1.6, 1.6), plot=False):
- """
- Test RandomSharpness cpp op
- """
- print(degrees)
- logger.info("Test RandomSharpness cpp op")
-
- # Original Images
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
-
- transforms_original = [C.Decode(),
- C.Resize((224, 224))]
-
- ds_original = data.map(operations=transforms_original, input_columns="image")
-
- ds_original = ds_original.batch(512)
-
- for idx, (image, _) in enumerate(ds_original.create_tuple_iterator(output_numpy=True)):
- if idx == 0:
- images_original = image
- else:
- images_original = np.append(images_original,
- image,
- axis=0)
-
- # Random Sharpness Adjusted Images
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
-
- c_op = C.RandomSharpness()
- if degrees is not None:
- c_op = C.RandomSharpness(degrees)
-
- transforms_random_sharpness = [C.Decode(),
- C.Resize((224, 224)),
- c_op]
-
- ds_random_sharpness = data.map(operations=transforms_random_sharpness, input_columns="image")
-
- ds_random_sharpness = ds_random_sharpness.batch(512)
-
- for idx, (image, _) in enumerate(ds_random_sharpness.create_tuple_iterator(output_numpy=True)):
- if idx == 0:
- images_random_sharpness = image
- else:
- images_random_sharpness = np.append(images_random_sharpness,
- image,
- axis=0)
-
- num_samples = images_original.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
-
- logger.info("MSE= {}".format(str(np.mean(mse))))
-
- if plot:
- visualize_list(images_original, images_random_sharpness)
-
-
- def test_random_sharpness_c_md5():
- """
- Test RandomSharpness cpp op with md5 comparison
- """
- logger.info("Test RandomSharpness cpp op with md5 comparison")
- original_seed = config_get_set_seed(200)
- original_num_parallel_workers = config_get_set_num_parallel_workers(1)
-
- # define map operations
- transforms = [
- C.Decode(),
- C.RandomSharpness((10.0, 15.0))
- ]
-
- # Generate dataset
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
- data = data.map(operations=transforms, input_columns=["image"])
-
- # check results with md5 comparison
- filename = "random_sharpness_cpp_01_result.npz"
- save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
-
- # Restore configuration
- ds.config.set_seed(original_seed)
- ds.config.set_num_parallel_workers(original_num_parallel_workers)
-
-
- def test_random_sharpness_c_py(degrees=(1.0, 1.0), plot=False):
- """
- Test Random Sharpness C and python Op
- """
- logger.info("Test RandomSharpness C and python Op")
-
- # RandomSharpness Images
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
- data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"])
-
- python_op = F.RandomSharpness(degrees)
- c_op = C.RandomSharpness(degrees)
-
- transforms_op = mindspore.dataset.transforms.py_transforms.Compose([lambda img: F.ToPIL()(img.astype(np.uint8)),
- python_op,
- np.array])
-
- ds_random_sharpness_py = data.map(operations=transforms_op, input_columns="image")
-
- ds_random_sharpness_py = ds_random_sharpness_py.batch(512)
-
- for idx, (image, _) in enumerate(ds_random_sharpness_py.create_tuple_iterator(output_numpy=True)):
- if idx == 0:
- images_random_sharpness_py = image
-
- else:
- images_random_sharpness_py = np.append(images_random_sharpness_py,
- image,
- axis=0)
-
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
- data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"])
-
- ds_images_random_sharpness_c = data.map(operations=c_op, input_columns="image")
-
- ds_images_random_sharpness_c = ds_images_random_sharpness_c.batch(512)
-
- for idx, (image, _) in enumerate(ds_images_random_sharpness_c.create_tuple_iterator(output_numpy=True)):
- if idx == 0:
- images_random_sharpness_c = image
-
- else:
- images_random_sharpness_c = np.append(images_random_sharpness_c,
- image,
- axis=0)
-
- num_samples = images_random_sharpness_c.shape[0]
- mse = np.zeros(num_samples)
- for i in range(num_samples):
- mse[i] = diff_mse(images_random_sharpness_c[i], images_random_sharpness_py[i])
- logger.info("MSE= {}".format(str(np.mean(mse))))
- if plot:
- visualize_list(images_random_sharpness_c, images_random_sharpness_py, visualize_mode=2)
-
-
- def test_random_sharpness_one_channel_c(degrees=(1.4, 1.4), plot=False):
- """
- Test Random Sharpness cpp op with one channel
- """
- logger.info("Test RandomSharpness C Op With MNIST Dataset (Grayscale images)")
-
- c_op = C.RandomSharpness()
- if degrees is not None:
- c_op = C.RandomSharpness(degrees)
- # RandomSharpness Images
- data = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
- ds_random_sharpness_c = data.map(operations=c_op, input_columns="image")
- # Original images
- data = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
-
- images = []
- images_trans = []
- labels = []
- for _, (data_orig, data_trans) in enumerate(zip(data, ds_random_sharpness_c)):
- image_orig, label_orig = data_orig
- image_trans, _ = data_trans
- images.append(image_orig.asnumpy())
- labels.append(label_orig.asnumpy())
- images_trans.append(image_trans.asnumpy())
-
- if plot:
- visualize_one_channel_dataset(images, images_trans, labels)
-
-
- def test_random_sharpness_invalid_params():
- """
- Test RandomSharpness with invalid input parameters.
- """
- logger.info("Test RandomSharpness with invalid input parameters.")
- try:
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
- data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
- C.RandomSharpness(10)], input_columns=["image"])
- except TypeError as error:
- logger.info("Got an exception in DE: {}".format(str(error)))
- assert "tuple" in str(error)
-
- try:
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
- data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
- C.RandomSharpness((-10, 10))], input_columns=["image"])
- except ValueError as error:
- logger.info("Got an exception in DE: {}".format(str(error)))
- assert "interval" in str(error)
-
- try:
- data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
- data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
- C.RandomSharpness((10, 5))], input_columns=["image"])
- except ValueError as error:
- logger.info("Got an exception in DE: {}".format(str(error)))
- assert "(min,max)" in str(error)
-
-
- if __name__ == "__main__":
- test_random_sharpness_py(plot=True)
- test_random_sharpness_py(None, plot=True) # Test with default values
- test_random_sharpness_py(degrees=(20.0, 25.0),
- plot=True) # Test with degree values that show more obvious transformation
- test_random_sharpness_py_md5()
- test_random_sharpness_c(plot=True)
- test_random_sharpness_c(None, plot=True) # test with default values
- test_random_sharpness_c(degrees=[10, 15],
- plot=True) # Test with degrees values that show more obvious transformation
- test_random_sharpness_c_md5()
- test_random_sharpness_c_py(degrees=[1.5, 1.5], plot=True)
- test_random_sharpness_c_py(degrees=[1, 1], plot=True)
- test_random_sharpness_c_py(degrees=[10, 10], plot=True)
- test_random_sharpness_one_channel_c(degrees=[1.7, 1.7], plot=True)
- test_random_sharpness_one_channel_c(degrees=None, plot=True) # Test with default values
- test_random_sharpness_invalid_params()
|