|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ create train dataset. """
-
- from functools import partial
-
- import mindspore.common.dtype as mstype
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.c_transforms as C2
- import mindspore.dataset.vision.c_transforms as C
-
-
- def create_dataset(dataset_path, config, repeat_num=1, batch_size=32):
- """
- create a train dataset
-
- Args:
- dataset_path(string): the path of dataset.
- config(EasyDict):the basic config for training
- repeat_num(int): the repeat times of dataset. Default: 1.
- batch_size(int): the batch size of dataset. Default: 32.
-
- Returns:
- dataset
- """
-
- load_func = partial(ds.Cifar10Dataset, dataset_path)
- data_set = load_func(num_parallel_workers=8, shuffle=False)
-
- resize_height = config.image_height
- resize_width = config.image_width
-
- mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
- std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
-
- # define map operations
- resize_op = C.Resize((resize_height, resize_width))
- normalize_op = C.Normalize(mean=mean, std=std)
- changeswap_op = C.HWC2CHW()
- c_trans = [resize_op, normalize_op, changeswap_op]
-
- type_cast_op = C2.TypeCast(mstype.int32)
-
- data_set = data_set.map(operations=c_trans, input_columns="image",
- num_parallel_workers=8)
- data_set = data_set.map(operations=type_cast_op,
- input_columns="label", num_parallel_workers=8)
-
- # apply batch operations
- data_set = data_set.batch(batch_size, drop_remainder=True)
-
- # apply dataset repeat operation
- data_set = data_set.repeat(repeat_num)
-
- return data_set
|