|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the License);
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # httpwww.apache.orglicensesLICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an AS IS BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- Defined callback for DeepFM.
- """
- import time
- from mindspore.train.callback import Callback
-
-
- def add_write(file_path, out_str):
- with open(file_path, 'a+', encoding='utf-8') as file_out:
- file_out.write(out_str + '\n')
-
-
- class EvalCallBack(Callback):
- """
- Monitor the loss in training.
- If the loss is NAN or INF terminating training.
- Note
- If per_print_times is 0 do not print loss.
- """
- def __init__(self, model, eval_dataset, auc_metric, eval_file_path):
- super(EvalCallBack, self).__init__()
- self.model = model
- self.eval_dataset = eval_dataset
- self.aucMetric = auc_metric
- self.aucMetric.clear()
- self.eval_file_path = eval_file_path
-
- def epoch_end(self, run_context):
- start_time = time.time()
- out = self.model.eval(self.eval_dataset)
- eval_time = int(time.time() - start_time)
- time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
- out_str = "{} EvalCallBack metric{}; eval_time{}s".format(
- time_str, out.values(), eval_time)
- print(out_str)
- add_write(self.eval_file_path, out_str)
-
-
- class LossCallBack(Callback):
- """
- Monitor the loss in training.
- If the loss is NAN or INF terminating training.
- Note
- If per_print_times is 0 do not print loss.
- Args
- loss_file_path (str) The file absolute path, to save as loss_file;
- per_print_times (int) Print loss every times. Default 1.
- """
- def __init__(self, loss_file_path, per_print_times=1):
- super(LossCallBack, self).__init__()
- if not isinstance(per_print_times, int) or per_print_times < 0:
- raise ValueError("print_step must be int and >= 0.")
- self.loss_file_path = loss_file_path
- self._per_print_times = per_print_times
-
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- loss = cb_params.net_outputs.asnumpy()
- cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
- cur_num = cb_params.cur_step_num
- if self._per_print_times != 0 and cur_num % self._per_print_times == 0:
- with open(self.loss_file_path, "a+") as loss_file:
- time_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
- loss_file.write("{} epoch: {} step: {}, loss is {}\n".format(
- time_str, cb_params.cur_epoch_num, cur_step_in_epoch, loss))
- print("epoch: {} step: {}, loss is {}\n".format(
- cb_params.cur_epoch_num, cur_step_in_epoch, loss))
-
-
- class TimeMonitor(Callback):
- """
- Time monitor for calculating cost of each epoch.
- Args
- data_size (int) step size of an epoch.
- """
- def __init__(self, data_size):
- super(TimeMonitor, self).__init__()
- self.data_size = data_size
-
- def epoch_begin(self, run_context):
- self.epoch_time = time.time()
-
- def epoch_end(self, run_context):
- epoch_mseconds = (time.time() - self.epoch_time) * 1000
- per_step_mseconds = epoch_mseconds / self.data_size
- print("epoch time: {0}, per step time: {1}".format(epoch_mseconds, per_step_mseconds), flush=True)
-
- def step_begin(self, run_context):
- self.step_time = time.time()
-
- def step_end(self, run_context):
- step_mseconds = (time.time() - self.step_time) * 1000
- print(f"step time {step_mseconds}", flush=True)
|