|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """VM implementations based on numpy."""
-
- import numpy as np
- from mindspore._checkparam import Validator as validator
-
-
- def avg_pooling(x, pool_h, pool_w, stride):
- """
- Applies average pooling over an input array.
-
- Args:
- x (numpy.ndarray): The input array to be average pooled.
- pool_h (int): Height of the pooling window.
- pool_w (int): Width of the pooling window.
- stride (int): The stride of the sliding window.
-
- Returns:
- numpy.ndarray, an output array after applying average pooling on input array.
- """
- validator.check_positive_int(stride, "stride")
- num, channel, height, width = x.shape
- out_h = (height - pool_h) // stride + 1
- out_w = (width - pool_w) // stride + 1
-
- col = im2col(x, pool_h, pool_w, stride)
- col = col.reshape(-1, pool_h * pool_w)
-
- out = np.mean(col, axis=1)
- out = out.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2)
-
- return out
-
-
- def avg_pool_grad(dout, origin_shape, pool_h, pool_w, stride):
- """
- Gets grad of average pooling.
-
- Args:
- x (numpy.ndarray): The input array to be average pooled.
- dout (numpy.ndarray): The grad of pre-layer.
- pool_h (int): Height of the pooling window.
- pool_w (int): Width of the pooling window.
- stride (int): The stride of the sliding window.
-
- Returns:
- numpy.ndarray, grad of avgerage pooling.
- """
- # pylint: disable=unused-argument
- _, _, height, width = dout.shape
- dx = np.zeros(origin_shape)
- for i in range(height):
- for j in range(width):
- dx[:, :, i:(i + pool_h), j:(j + pool_w)] += np.ones((pool_h, pool_w))
- return dx
-
-
- def _batch_norm(x, scale, shift, running_mean=None, running_var=None,
- eps=1e-05, momentum=0.1, is_training=True):
- """Batch normalization over an array."""
- _, c_h_w = x.shape
- # Handle running_mean and running_var are not None
- # if running_mean is None:
- # running_mean = np.zeros(c_h_w)
- # running_var = np.zeros(c_h_w)
- running_mean = np.zeros(c_h_w)
- running_var = np.zeros(c_h_w)
- if np.ndim(scale) > 0:
- scale = scale.mean()
- if np.ndim(shift) > 0:
- shift = shift.mean()
-
- if is_training:
- x_mean = np.mean(x, axis=0)
- x_var = np.var(x, axis=0)
-
- # Normalization followed by Affine transformation
- x_norm = (x - x_mean) / np.sqrt(x_var + eps)
-
- # Estimate running average of mean and variance to use at test time
- running_mean = momentum * running_mean + (1 - momentum) * x_mean
- running_var = momentum * running_var + (1 - momentum) * x_var
- else:
- # normalize using running average
- x_norm = (x - running_mean) / np.sqrt(running_var + eps)
- x_mean = running_mean
- x_var = running_var
-
- out = scale * x_norm + shift
-
- return out, x_mean, x_var, running_mean, running_var
-
-
- def batch_norm(x, scale=1, shift=0, mean=None, variance=None,
- eps=1e-05, momentum=0.1, is_training=True):
- """Batch normalization over an array."""
- input_shape = x.shape
- if x.ndim != 2:
- batch_num = x.shape[0]
- x = x.reshape(batch_num, -1)
-
- out, _, _, running_mean, running_var = _batch_norm(x, scale, shift, mean, variance, \
- eps, momentum, is_training)
-
- return out.reshape(*input_shape), np.array(scale), np.array(shift), running_mean, running_var
-
-
- def _batch_norm_grad(dout, x, scale, save_mean, save_inv_variance, \
- eps=1e-05, momentum=0.1, is_training=True):
- """Batch normalization over an array."""
- if x.ndim != 2:
- batch_num = x.shape[0]
- x = x.reshape(batch_num, -1)
- if np.ndim(scale) > 0:
- scale = scale.mean()
- x_norm, x_mean, x_var, _, _ = _batch_norm(x, scale, shift=0, running_mean=save_mean, \
- running_var=save_inv_variance, \
- eps=eps, momentum=momentum, is_training=is_training)
- batch_size = x.shape[0]
- dx_norm = scale * dout
- dvar = np.sum(dx_norm * (x - x_mean) * ((x_var + eps) ** (-3.0 / 2)) * (-1.0 / 2), axis=0)
- dmean = np.sum(dx_norm * (-1.0 / np.sqrt(x_var + eps)), axis=0) \
- + dvar * (np.sum(-2 * (x - x_mean), axis=0) * (1.0 / batch_size))
- dx = dx_norm * (1.0 / np.sqrt(x_var + eps)) + dvar * (2.0 * (x - x_mean) / batch_size) + dmean * (1.0 / batch_size)
- dgamma = np.sum(dout * x_norm, axis=0)
- dbeta = np.sum(dout, axis=0)
- return dx, dgamma, dbeta
-
-
- def batch_norm_grad(dy, x, scale, save_mean, save_inv_variance):
- """Batch normalization over an array."""
- if dy.ndim != 2:
- batch_size = dy.shape[0]
- dy = dy.reshape(batch_size, -1)
-
- dx, dgamma, dbeta = _batch_norm_grad(dy, x, scale, save_mean, save_inv_variance)
- input_shape = x.shape
- dx = dx.reshape(*input_shape)
- return dx, dgamma, dbeta
-
-
- def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
- """Rearranges a row vector to an image."""
- if isinstance(stride, int):
- stride_h = stride
- stride_w = stride
- elif isinstance(stride, tuple) and len(stride) == 2:
- stride_h = stride[0]
- stride_w = stride[1]
- elif isinstance(stride, tuple) and len(stride) == 4:
- stride_h = stride[2]
- stride_w = stride[3]
- else:
- raise ValueError(f"The \'stride\' should be an int number or "
- f"a tuple of two or four int numbers, but got {stride}")
-
- if isinstance(pad, int):
- pad_top = pad
- pad_bottom = pad
- pad_left = pad
- pad_right = pad
- elif isinstance(pad, tuple) and len(pad) == 2:
- pad_top = pad[0]
- pad_bottom = pad[0]
- pad_left = pad[1]
- pad_right = pad[1]
- elif isinstance(pad, tuple) and len(pad) == 4:
- pad_top, pad_bottom, pad_left, pad_right = pad
- else:
- raise ValueError(f"The \'pad\' should be an int number or "
- f"a tuple of two or four int numbers, but got {pad}")
-
- batch_num, channel, height, width = input_shape
- out_h = (height + pad_top + pad_bottom - filter_h) // stride_h + 1
- out_w = (width + pad_left + pad_right - filter_w) // stride_w + 1
- col = col.reshape(batch_num, out_h, out_w, channel, filter_h, filter_w) \
- .transpose(0, 3, 4, 5, 1, 2)
-
- img = np.zeros((batch_num,
- channel,
- height + pad_top + pad_bottom + stride_h - 1,
- width + pad_left + pad_right + stride_w - 1)) \
- .astype(col.dtype)
- for y in range(filter_h):
- y_max = y + stride_h * out_h
- for x in range(filter_w):
- x_max = x + stride_h * out_w
- img[:, :, y:y_max:stride_h, x:x_max:stride_h] += col[:, :, y, x, :, :]
-
- return img[:, :, pad_top:height + pad_bottom, pad_left:width + pad_right]
-
-
- def convolve(x, w, b=None, pad_mode="valid"):
- """
- Gets the discrete, linear convolution of two one-dimensional sequences.
-
- Args:
- x (numpy.ndarray): One-dimensional input array.
- w (numpy.ndarray): One-dimensional input array.
- b (numpy.ndarray): One-dimensional input array. Default: None.
- pad_mode (str): Padding mode which can be: "full" means returns the
- convolution at each point of overlap, with an output shape
- of (N+M-1,); "same" means returns output of length max(M, N);
- Amd "valid" means returns output of length max(M, N) - min(M, N)
- + 1. Default: "valid".
-
- Returns:
- numpy.ndarray, discrete, linear convolution of x and w, then plus b.
- """
- if pad_mode not in {"same", "valid"}:
- pad_mode = "full"
- y = np.convolve(x, w, pad_mode)
- if b:
- y += b
- return y
-
-
- def conv2d(x, weight, bias=None, stride=1, pad=0,
- dilation=1, groups=1, padding_mode='zeros'):
- """Convolution 2D."""
- # pylint: disable=unused-argument
- validator.check_value_type('stride', stride, (int, tuple))
- if isinstance(stride, int):
- stride = (stride, stride)
- elif len(stride) == 4:
- stride = (stride[2], stride[3])
- if len(stride) != 2 or (not isinstance(stride[0], int)) or \
- (not isinstance(stride[1], int)) or \
- stride[0] < 1 or stride[1] < 1:
- raise ValueError(f"The \'stride\' of \'conv2d\' should be an positive int number or "
- f"a tuple of two positive int numbers, but got {stride}")
- stride_h = stride[0]
- stride_w = stride[1]
- validator.check_value_type('dilation', dilation, (int, tuple))
- if isinstance(dilation, int):
- dilation = (dilation, dilation)
- elif len(dilation) == 4:
- dilation = (dilation[2], dilation[3])
- if len(dilation) != 2 or (not isinstance(dilation[0], int)) or \
- (not isinstance(dilation[1], int)) or \
- dilation[0] < 1 or dilation[1] < 1:
- raise ValueError(f"The \'dilation\' of \'conv2d\' should be an positive int number or "
- f"a tuple of two positive int numbers, but got {dilation}")
- dilation_h = dilation[0]
- dilation_w = dilation[1]
-
- if isinstance(pad, int):
- pad_top = pad
- pad_bottom = pad
- pad_left = pad
- pad_right = pad
- elif isinstance(pad, tuple) and len(pad) == 4:
- pad_top, pad_bottom, pad_left, pad_right = pad
- else:
- raise ValueError(f"The \'pad\' should be an int number or "
- f"a tuple of two or four int numbers, but got {pad}")
-
- batch_num, _, x_h, x_w = x.shape
- filter_num, _, filter_h, filter_w = weight.shape
- out_h = 1 + int((x_h + pad_top + pad_bottom - filter_h - (filter_h - 1) * (dilation_h - 1)) / stride_h)
- out_w = 1 + int((x_w + pad_left + pad_right - filter_w - (filter_w - 1) * (dilation_w - 1)) / stride_w)
- col = im2col(x, filter_h, filter_w, stride, pad, dilation)
- col_w = np.reshape(weight, (filter_num, -1)).T
- out = np.dot(col, col_w)
- out = out.reshape(batch_num, out_h, out_w, -1).transpose(0, 3, 1, 2)
- if bias is not None:
- out += bias
- return out
-
-
- def conv2d_backprop_filter(dout, x, w_size, stride=1, pad=0):
- """Backpropagation filter for conv2d."""
- filter_num, channel, filter_height, filter_width = w_size
- dout = dout.transpose(0, 2, 3, 1).reshape(-1, filter_num)
- col = im2col(x, filter_height, filter_width, stride, pad)
- dw = np.dot(col.T, dout)
- dw = dw.transpose(1, 0).reshape(filter_num, channel, filter_height, filter_width)
- return dw
-
-
- def conv2d_backprop_input(dout, x_size, weight, stride=1, pad=0):
- """Backpropagation input for conv2d."""
- filter_num, _, filter_h, filter_w = weight.shape
- dout = dout.transpose(0, 2, 3, 1).reshape(-1, filter_num)
- col_w = weight.reshape(filter_num, -1).T
- dcol = np.dot(dout, col_w.T)
- dx = col2im(dcol, x_size, filter_h, filter_w, stride, pad)
- return dx
-
-
- def flatten(x):
- """
- Flattens an array to one dimension.
-
- Args:
- x (numpy.ndarray): An array to be flattened.
-
- Returns:
- numpy.ndarray, a flattened array in one dimension.
- """
- return x.flatten()
-
-
- def flatten2(x):
- """
- Flattens an array to one dimension by reshape.
-
- Args:
- x (numpy.ndarray): An array to be flattened.
-
- Returns:
- numpy.ndarray, a flattened array in one dimension.
- """
- return x.reshape(1, -1)
-
-
- def flatten_batch(x):
- """
- Flattens a batch of arrays to one dimension.
-
- Args:
- x (numpy.ndarray): A batch of arrays to be flattened.
-
- Returns:
- numpy.ndarray, a flattened one dimension array.
- """
- return x.reshape(x.shape[0], -1)
-
-
- def flatten_grad(dout, x):
- """Grad of flatten."""
- dout = np.reshape(dout, x)
- return dout
-
-
- def im2col(img, filter_h, filter_w, stride=1, pad=0, dilation=1):
- """Rearranges an image to row vector."""
- if isinstance(stride, int):
- stride_h = stride
- stride_w = stride
- elif isinstance(stride, tuple) and len(stride) == 2:
- stride_h = stride[0]
- stride_w = stride[1]
- elif isinstance(stride, tuple) and len(stride) == 4:
- stride_h = stride[2]
- stride_w = stride[3]
- else:
- raise ValueError(f"The \'stride\' should be an int number or "
- f"a tuple of two or four int numbers, but got {stride}")
- if isinstance(dilation, int):
- dilation_h = dilation
- dilation_w = dilation
- elif isinstance(dilation, tuple) and len(dilation) == 2:
- dilation_h = dilation[0]
- dilation_w = dilation[1]
- elif isinstance(dilation, tuple) and len(dilation) == 4:
- dilation_h = dilation[2]
- dilation_w = dilation[3]
- else:
- raise ValueError(f"The \'dilation\' should be an int number or "
- f"a tuple of two or four int numbers, but got {dilation}")
-
- if isinstance(pad, int):
- pad_top = pad
- pad_bottom = pad
- pad_left = pad
- pad_right = pad
- elif isinstance(pad, tuple) and len(pad) == 4:
- pad_top, pad_bottom, pad_left, pad_right = pad
- else:
- raise ValueError(f"The \'pad\' should be an int number or "
- f"a tuple of two or four int numbers, but got {pad}")
-
- batch_num, channel, height, width = img.shape
- out_h = (height + pad_top + pad_bottom - filter_h - (filter_h - 1) * (dilation_h - 1)) // stride_h + 1
- out_w = (width + pad_left + pad_right - filter_w - (filter_w - 1) * (dilation_w - 1)) // stride_w + 1
-
- img = np.pad(img, [(0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)], 'constant')
- col = np.zeros((batch_num, channel, filter_h, filter_w, out_h, out_w)).astype(img.dtype)
-
- for y in range(filter_h):
- y_max = y + stride_h * out_h
- for x in range(filter_w):
- x_max = x + stride_h * out_w
- col[:, :, y, x, :, :] = img[:, :, y:y_max:stride_h, x:x_max:stride_h]
-
- col = col.transpose(0, 4, 5, 1, 2, 3).reshape(batch_num * out_h * out_w, -1)
- return col
-
-
- def matmul(x, w, b=None):
- """
- Dot product of array x and w, then plus array b if b is not None.
-
- Args:
- x (numpy.ndarray): Represents the input array.
- w (numpy.ndarray): Represents weights array.
- b (numpy.ndarray): Represents bias array which has the same shape as x. Default: None.
-
- Returns:
- numpy.ndarray, the result of (x*w + b).
- """
- y = np.dot(x, w)
- if b:
- y += b
- return y
-
-
- def max_pooling(x, pool_h, pool_w, stride):
- """Max pooling."""
- validator.check_positive_int(stride, "stride")
- num, channel, height, width = x.shape
- out_h = (height - pool_h) // stride + 1
- out_w = (width - pool_w) // stride + 1
-
- col = im2col(x, pool_h, pool_w, stride)
- col = col.reshape(-1, pool_h * pool_w)
-
- out = np.max(col, axis=1)
- out = out.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2)
-
- return out
-
-
- def max_pool_grad(x, dout, pool_h, pool_w, stride):
- """Grad of max pooling."""
- dout = dout.transpose(0, 2, 3, 1)
- pool_size = pool_h * pool_w
- dmax = np.zeros((dout.size, pool_size), dout.dtype)
- col = im2col(x, pool_h, pool_w, stride)
- col = col.reshape(-1, pool_h * pool_w)
- arg_max = np.argmax(col, axis=1)
- dmax[np.arange(arg_max.size), arg_max.flatten()] = dout.flatten()
- dmax = dmax.reshape(dout.shape + (pool_size,))
- dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
- dx = col2im(dcol, x.shape, pool_h, pool_w, stride)
- return dx
-
-
- def max_pool_grad_with_argmax(x, dout, arg_max, pool_h, pool_w, stride):
- """Grad of max pooling with argmax."""
- dout = dout.transpose(0, 2, 3, 1)
- pool_size = pool_h * pool_w
- dmax = np.zeros((dout.size, pool_size), dout.dtype)
- dmax[np.arange(arg_max.size), arg_max.flatten()] = dout.flatten()
- dmax = dmax.reshape(dout.shape + (pool_size,))
- dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
- dx = col2im(dcol, x.shape, pool_h, pool_w, stride)
- return dx
-
-
- def max_pool_with_argmax(x, pool_h, pool_w, stride):
- """Max pooling with argmax."""
- validator.check_positive_int(stride, "stride")
- num, channel, height, width = x.shape
- out_h = (height - pool_h) // stride + 1
- out_w = (width - pool_w) // stride + 1
- col = im2col(x, pool_h, pool_w, stride)
- col = col.reshape(-1, pool_h * pool_w)
- out = np.max(col, axis=1)
- out_argmax = np.argmax(col, axis=1)
- out = out.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2)
- out_argmax = out_argmax.reshape((num, out_h, out_w, channel)).transpose(0, 3, 1, 2)
- return out, out_argmax
-
-
- def relu(x):
- """
- Rectified linear unit.
-
- Args:
- x (numpy.ndarray): The input array.
-
- Returns:
- numpy.ndarray, the array applied relu.
- """
- return x * (x > 0)
-
-
- def relu_grad(y):
- """
- Grad of relu.
-
- Args:
- y (numpy.ndarray): The input array.
-
- Returns:
- numpy.ndarray, the array applied grad of relu.
- """
- y[y <= 0] = 0
- y[y > 0] = 1
- return y
-
-
- def sigmoid(x):
- """
- Sigmoid activation function.
-
- Args:
- x (numpy.ndarray): The input array.
-
- Returns:
- numpy.ndarray, the array applied sigmoid.
- """
- return 1 / (1 + np.exp(x * -1))
-
-
- def tanh(x):
- """
- Computes hyperbolic tangent element-wise.
-
- Args:
- x (numpy.ndarray): The input array.
-
- Returns:
- numpy.ndarray, the array applied tanh.
- """
- a = np.exp(x) - np.exp(x * -1)
- b = np.exp(x) + np.exp(x * -1)
- return a / b
-
-
- def softmax(x, axis=None):
- """
- Softmax function which is `softmax(x) = np.exp(x)/sum(np.exp(x))`.
-
- Args:
- x (numpy.ndarray): Input array.
- axis (Union[int, tuple[int]]): Axis to compute values along. Default: None.
-
- Returns:
- numpy.ndarray, has the same shape as x.
- """
- from scipy.special import softmax as scipy_softmax
- return scipy_softmax(x, axis)
-
-
- def softmax_cross_entropy_with_logits(logits, labels):
- sample_num = labels.shape[0]
- prob = softmax(logits)
- log_likelihood = -np.log(prob[range(sample_num)]) * labels
- loss = np.sum(log_likelihood)
- dx = prob.copy()
- dx[range(sample_num)] -= labels
- return loss, dx
-
-
- def shape(x):
- """
- Gets the array's dimensions.
-
- Args:
- x (numpy.ndarray): Input array.
-
- Returns:
- tuple, the shape/dimensions of the input array.
- """
- return np.array(np.shape(x))
-
-
- def expand_dims(x, axis):
- """
- Expands the shape of an array.
-
- Args:
- x (numpy.ndarray): Input array.
- axis (int): Position in the expanded axes where the new axis is placed.
-
- Returns:
- numpy.ndarray, view of input array with the number of dimensions increased by one.
- """
- return np.expand_dims(x, axis)
-
-
- def squeeze(x, axis):
- """
- Removes single-dimensional entries from the shape of an array.
-
- Args:
- x (numpy.ndarray): Input array.
- axis (Union[int, tuple[int]]): Selected subset of the single-dimensional entries in the shape.
-
- Returns:
- numpy.ndarray, the input numpy.ndarray, but with all or a subset of the dimensions of length
- 1 removed.
- """
- return np.squeeze(x, tuple(axis))
-
-
- def reshape(x, shp):
- """
- Applies a new shape to an array without changing its data.
-
- Args:
- x (numpy.ndarray): Input array.
- shp (tuple[int]): New shape to apply to x.
-
- Returns:
- numpy.ndarray, a new view object or a copy of input array.
- """
- return np.reshape(x, tuple(shp))
-
-
- def rank(x):
- """
- Gets number of array dimensions.
-
- Args:
- x (numpy.ndarray): Input array.
-
- Returns:
- int, number of input array dimensions.
- """
- return np.array(np.ndim(x))
-
-
- def logsoftmax(x):
- """
- Log softmax function.
-
- Args:
- x (numpy.ndarray): Input array.
-
- Returns:
- numpy.ndarray, the result of applying log softmax on the input array.
- """
- return np.array(np.log(softmax(x)))
-
-
- def transpose(x, axes=None):
- """
- Transposes an input array according to axes.
-
- Args:
- x (numpy.ndarray): Input array.
- axes (list): The axes to be transposed. Default: None.
-
- Returns:
- numpy.ndarray, transposed array.
- """
- return np.transpose(x, axes)
-
-
- def invert_permutation(x):
- """
- Gets the inverse permutation of an array.
-
- Args:
- x (numpy.ndarray): Input array.
-
- Returns:
- tuple, the inverse permutation of the input array.
- """
- x = np.array(x)
- y = np.argsort(x)
- return tuple(y)
-
-
- def select(cond, x, y):
- """
- Gets elements from x or y depending on cond.
-
- Args:
- cond (bool): Where True, yield x, otherwise yield y.
- x (numpy.ndarray): Values from which to choose.
- y (numpy.ndarray): Values from which to choose.
-
- Returns:
- numpy.ndarray, elements from x where condition is True, and elements from y elsewhere.
- """
- return np.where(cond, x, y)
-
-
- def sum_by_axis(x, axis):
- """
- Sum of array elements over a given axis.
-
- Args:
- x (numpy.ndarray): Input array.
- axis (Union[int, tuple[int]]): Axis or axes along which a sum is performed.
-
- Returns:
- numpy.ndarray, has the same shape as input array with the specified axis removed.
- """
- return np.sum(x, axis)
-
-
- def equal(x, y):
- """
- Gets (x == y) element-wise.
-
- Args:
- x (numpy.ndarray): Input array.
- y (numpy.ndarray): Input array.
-
- Returns:
- numpy.ndarray, element-wise comparison of x and y.
- """
- return np.equal(x, y)
-
-
- def not_equal(x, y):
- """
- Gets (x != y) element-wise.
-
- Args:
- x (numpy.ndarray): Input array.
- y (numpy.ndarray): Input array.
-
- Returns:
- numpy.ndarray, element-wise comparison of x and y.
- """
- return np.not_equal(x, y)
-
-
- def greater(x, y):
- """
- Get the truth value of (x > y) element-wise.
-
- Args:
- x (numpy.ndarray): Input array.
- y (numpy.ndarray): Input array.
-
- Returns:
- numpy.ndarray, element-wise comparison of x and y.
- """
- return np.greater(x, y)
-
-
- def less(x, y):
- """
- Get the truth value of (x < y) element-wise.
-
- Args:
- x (numpy.ndarray): Input array.
- y (numpy.ndarray): Input array.
-
- Returns:
- Array, element-wise comparison of x and y.
- """
- return np.less(x, y)
-
-
- def logical_not(x):
- """
- Gets the truth value of NOT x element-wise.
-
- Args:
- x (numpy.ndarray): Input array.
-
- Returns:
- bool, have the same shape as x of the NOT operation on elements of x.
- """
- return np.logical_not(x)
-
-
- def sqrt(x):
- """
- Gets the non-negative square-root of an numpy.ndarray, element-wise.
-
- Args:
- x (numpy.ndarray): Input array.
-
- Returns:
- numpy.ndarray, has the same shape as x, containing the positive square-root of each
- element in x.
- """
- return np.sqrt(x)
-
-
- def power(x, y):
- """
- First array elements raised to powers from second numpy.ndarray, element-wise.
-
- Args:
- x (numpy.ndarray): The bases array.
- y (numpy.ndarray): The exponents array.
-
- Returns:
- numpy.ndarray, the bases in x raised to the exponents in y.
- """
- return np.power(x, y)
-
-
- def exp(x):
- """
- Gets the exponential of all elements in the input array.
-
- Args:
- x (numpy.ndarray): Input array.
-
- Returns:
- numpy.ndarray, element-wise exponential of x.
- """
- return np.exp(x)
-
-
- def maximum(x, y):
- """
- Gets the max of x and y element-wise.
-
- If x > y, return x. Otherwise, return y.
-
- Args:
- x (numpy.ndarray): First input array.
- y (numpy.ndarray): Second input array ave the same type as x.
-
- Returns:
- numpy.ndarray, has the same type as x.
- """
- return np.maximum(x, y)
-
-
- def minimum(x, y):
- """
- Gets the min of x and y element-wise.
-
- If x < y, return x. Otherwise, return y.
-
- Args:
- x (numpy.ndarray): First input array.
- y (numpy.ndarray): Second input array have the same type as x.
-
- Returns:
- numpy.ndarray, has the same type as x.
- """
- return np.minimum(x, y)
-
-
- def all_(x, axis=(), keep_dims=False):
- """
- Check all array elements along a given axis evaluate to True.
-
- Args:
- x (numpy.ndarray): An array to be reduced.
- axis (Union[None, int, tuple(int)): Dimensions of reduction.
- keep_dims (bool): Whether to keep the reduced dimensions.
-
- Returns:
- numpy.ndarray, has the same type as x.
- """
- axis = None if axis == () else axis
- return np.all(x, axis, keepdims=keep_dims)
-
-
- def any_(x, axis=(), keep_dims=False):
- """
- Check any array element along a given axis evaluate to True.
-
- Args:
- x (numpy.ndarray): An array to be reduced.
- axis (Union[None, int, tuple(int)): Dimensions of reduction.
- keep_dims (bool): Whether to keep the reduced dimensions.
-
- Returns:
- numpy.ndarray, has the same type as x.
- """
- axis = None if axis == () else axis
- return np.any(x, axis, keepdims=keep_dims)
|