|
- /**
- * Copyright 2021 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <vector>
- #include <memory>
- #include "common/common_test.h"
- #include "ops/unsqueeze.h"
- #include "ir/dtype/type.h"
- #include "ir/value.h"
- #include "abstract/dshape.h"
- #include "utils/tensor_construct_utils.h"
-
- namespace mindspore {
- namespace ops {
- class TestUnsqueeze : public UT::Common {
- public:
- TestUnsqueeze() {}
- void SetUp() {}
- void TearDown() {}
- };
-
- /*TEST_F(TestUnsqueeze, test_unsqueeze_1) {
- auto unsqueeze = std::make_shared<Unsqueeze>();
- std::vector<int64_t> axis = {};
- unsqueeze->Init(axis);
- auto tensor_x = std::make_shared<tensor::Tensor>(kNumberTypeFloat16, std::vector<int64_t>{1, 3, 2});
- MS_EXCEPTION_IF_NULL(tensor_x);
- auto tensor_x_data = reinterpret_cast<int *>(tensor_x->data_c());
- *tensor_x_data = 1;
- tensor_x_data++;
- *tensor_x_data = 2;
- tensor_x_data++;
- *tensor_x_data = 3;
- tensor_x_data++;
- *tensor_x_data = 4;
- tensor_x_data++;
- *tensor_x_data = 5;
- tensor_x_data++;
- *tensor_x_data = 6;
- tensor_x_data++;
- auto abstract = unsqueeze->Infer({tensor_x->ToAbstract()});
- MS_EXCEPTION_IF_NULL(abstract);
- EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
- auto shape_ptr = abstract->BuildShape();
- MS_EXCEPTION_IF_NULL(shape_ptr);
- EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
- auto shape = shape_ptr->cast<abstract::ShapePtr>();
- MS_EXCEPTION_IF_NULL(shape);
- auto shape_vec = shape->shape();
- EXPECT_EQ(shape_vec.size(), 2);
- EXPECT_EQ(shape_vec[0], 3);
- EXPECT_EQ(shape_vec[1], 2);
- auto type = abstract->BuildType();
- MS_EXCEPTION_IF_NULL(type);
- EXPECT_EQ(type->isa<TensorType>(), true);
- auto tensor_type = type->cast<TensorTypePtr>();
- MS_EXCEPTION_IF_NULL(tensor_type);
- auto data_type = tensor_type->element();
- MS_EXCEPTION_IF_NULL(data_type);
- EXPECT_EQ(data_type->type_id(), kNumberTypeFloat16);
- }
- */
- TEST_F(TestUnsqueeze, test_unsqueeze_1) {
- auto unsqueeze = std::make_shared<Unsqueeze>();
- std::vector<int64_t> axis = {1, 2};
- unsqueeze->Init(axis);
- auto tensor_x = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, std::vector<int64_t>{1, 3});
- MS_EXCEPTION_IF_NULL(tensor_x);
- auto tensor_x_data = reinterpret_cast<int *>(tensor_x->data_c());
- *tensor_x_data = 1;
- tensor_x_data++;
- *tensor_x_data = 2;
- tensor_x_data++;
- *tensor_x_data = 3;
- tensor_x_data++;
- auto abstract = unsqueeze->Infer({tensor_x->ToAbstract()});
- MS_EXCEPTION_IF_NULL(abstract);
- EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
- auto shape_ptr = abstract->BuildShape();
- MS_EXCEPTION_IF_NULL(shape_ptr);
- EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
- auto shape = shape_ptr->cast<abstract::ShapePtr>();
- MS_EXCEPTION_IF_NULL(shape);
- auto shape_vec = shape->shape();
- EXPECT_EQ(shape_vec.size(), 4);
- EXPECT_EQ(shape_vec[0], 1);
- EXPECT_EQ(shape_vec[1], 1);
- EXPECT_EQ(shape_vec[2], 1);
- EXPECT_EQ(shape_vec[3], 3);
- auto type = abstract->BuildType();
- MS_EXCEPTION_IF_NULL(type);
- EXPECT_EQ(type->isa<TensorType>(), true);
- auto tensor_type = type->cast<TensorTypePtr>();
- MS_EXCEPTION_IF_NULL(tensor_type);
- auto data_type = tensor_type->element();
- MS_EXCEPTION_IF_NULL(data_type);
- EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
- }
- } // namespace ops
- } // namespace mindspore
|