|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train"""
-
- import argparse
- import numpy as np
- import mindspore.context as context
- from src.read_var import read_nc
- from src.GOMO import GOMO_init, GOMO, read_init
-
- parser = argparse.ArgumentParser(description='GOMO')
- parser.add_argument('--file_path', type=str, default=None, help='file path')
- parser.add_argument('--outputs_path', type=str, default=None, help='outputs path')
- parser.add_argument('--im', type=int, default=65, help='im size')
- parser.add_argument('--jm', type=int, default=49, help='jm size')
- parser.add_argument('--kb', type=int, default=21, help='kb size')
- parser.add_argument('--stencil_width', type=int, default=1, help='stencil width')
- parser.add_argument('--step', type=int, default=10, help='time step')
- args_gomo = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False, enable_graph_kernel=True)
-
- if __name__ == "__main__":
- variable = read_nc(args_gomo.file_path)
- im = args_gomo.im
- jm = args_gomo.jm
- kb = args_gomo.kb
- stencil_width = args_gomo.stencil_width
-
- # variable init
- dx, dy, dz, uab, vab, elb, etb, sb, tb, ub, vb, dt, h, w, wubot, wvbot, vfluxb, utb, vtb, dhb, egb, vfluxf, z, zz, \
- dzz, cor, fsm = read_init(
- variable, im, jm, kb)
-
- # define grid and init variable update
- net_init = GOMO_init(im, jm, kb, stencil_width)
- init_res = net_init(dx, dy, dz, uab, vab, elb, etb, sb, tb, ub, vb, h, w, vfluxf, zz, fsm)
- for res_tensor in init_res:
- if isinstance(res_tensor, (list, tuple)):
- for rt in res_tensor:
- rt.data_sync(True)
- else:
- res_tensor.data_sync(True)
- ua, va, el, et, etf, d, dt, l, q2b, q2lb, kh, km, kq, aam, w, q2, q2l, t, s, u, v, cbc, rmean, rho, x_d, y_d, z_d\
- = init_res
-
- # define GOMO model
- Model = GOMO(im=im, jm=jm, kb=kb, stencil_width=stencil_width, variable=variable, x_d=x_d, y_d=y_d, z_d=z_d,
- q2b=q2b, q2lb=q2lb, aam=aam, cbc=cbc, rmean=rmean)
-
- # time step of GOMO Model
- for step in range(1, args_gomo.step+1):
- elf, etf, ua, uab, va, vab, el, elb, d, u, v, w, kq, km, kh, q2, q2l, tb, t, sb, s, rho, wubot, wvbot, ub, vb, \
- egb, etb, dt, dhb, utb, vtb, vfluxb, et, steps, vamax, q2b, q2lb = Model(
- etf, ua, uab, va, vab, el, elb, d, u, v, w, kq, km, kh, q2, q2l, tb, t, sb, s, rho,
- wubot, wvbot, ub, vb, egb, etb, dt, dhb, utb, vtb, vfluxb, et)
- vars_list = etf, ua, uab, va, vab, el, elb, d, u, v, w, kq, km, kh, q2, q2l, tb, t, sb, s, rho, wubot, wvbot, \
- ub, vb, egb, etb, dt, dhb, utb, vtb, vfluxb, et
- for var in vars_list:
- var.asnumpy()
- # save output
- if step % 5 == 0:
- np.save(args_gomo.outputs_path + "u_"+str(step)+".npy", u.asnumpy())
- np.save(args_gomo.outputs_path + "v_" + str(step) + ".npy", v.asnumpy())
- np.save(args_gomo.outputs_path + "t_" + str(step) + ".npy", t.asnumpy())
- np.save(args_gomo.outputs_path + "et_" + str(step) + ".npy", et.asnumpy())
|