|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############export checkpoint file into air and onnx models#################
- python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt
- """
-
- import argparse
- import numpy as np
- from mindspore import Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
- help='Model.')
- parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
- parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
- args_opt = parser.parse_args()
-
- if args_opt.net == "squeezenet":
- from src.squeezenet import SqueezeNet as squeezenet
- else:
- from src.squeezenet import SqueezeNet_Residual as squeezenet
- if args_opt.dataset == "cifar10":
- num_classes = 10
- else:
- num_classes = 1000
-
- onnx_filename = args_opt.net + '_' + args_opt.dataset
- air_filename = args_opt.net + '_' + args_opt.dataset
-
- net = squeezenet(num_classes=num_classes)
-
- assert args_opt.checkpoint_path is not None, "checkpoint_path is None."
-
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(net, param_dict)
-
- input_arr = Tensor(np.zeros([1, 3, 227, 227], np.float32))
- export(net, input_arr, file_name=onnx_filename, file_format="ONNX")
- export(net, input_arr, file_name=air_filename, file_format="AIR")
|