|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Cycle GAN predict."""
- import os
- from mindspore import Tensor
-
- from src.models import get_generator
- from src.utils import get_args, load_ckpt, save_image, Reporter
- from src.dataset import create_dataset
-
- def predict():
- """Predict function."""
- args = get_args("predict")
- G_A = get_generator(args)
- G_B = get_generator(args)
- # Use BatchNorm2d with batchsize=1, affine=False, training=True instead of InstanceNorm2d
- # Use real mean and varance rather than moving_men and moving_varance in BatchNorm2d
- G_A.set_train(True)
- G_B.set_train(True)
- load_ckpt(args, G_A, G_B)
-
- imgs_out = os.path.join(args.outputs_dir, "predict")
- if not os.path.exists(imgs_out):
- os.makedirs(imgs_out)
- if not os.path.exists(os.path.join(imgs_out, "fake_A")):
- os.makedirs(os.path.join(imgs_out, "fake_A"))
- if not os.path.exists(os.path.join(imgs_out, "fake_B")):
- os.makedirs(os.path.join(imgs_out, "fake_B"))
- args.data_dir = 'testA'
- ds = create_dataset(args)
- reporter = Reporter(args)
- reporter.start_predict("A to B")
- for data in ds.create_dict_iterator(output_numpy=True):
- img_A = Tensor(data["image"])
- path_A = str(data["image_name"][0], encoding="utf-8")
- fake_B = G_A(img_A)
- save_image(fake_B, os.path.join(imgs_out, "fake_B", path_A))
- reporter.info('save fake_B at %s', os.path.join(imgs_out, "fake_B", path_A))
- reporter.end_predict()
- args.data_dir = 'testB'
- ds = create_dataset(args)
- reporter.dataset_size = args.dataset_size
- reporter.start_predict("B to A")
- for data in ds.create_dict_iterator(output_numpy=True):
- img_B = Tensor(data["image"])
- path_B = str(data["image_name"][0], encoding="utf-8")
- fake_A = G_B(img_B)
- save_image(fake_A, os.path.join(imgs_out, "fake_A", path_B))
- reporter.info('save fake_A at %s', os.path.join(imgs_out, "fake_A", path_B))
- reporter.end_predict()
-
- if __name__ == "__main__":
- predict()
|