|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """train_imagenet."""
- import sys
- import argparse
- import random
- import pickle
- import numpy as np
- from train_dataset import create_dataset
- from config import config
- from mindspore import context
- from mindspore.nn.dynamic_lr import piecewise_constant_lr, warmup_lr
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_param_into_net
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor # TimeMonitor
- import mindspore.dataset.engine as de
- from mindspore.nn.metrics import Accuracy
- from model.model import resnet50, NetWithLossClass, TrainStepWrap, TestStepWrap
-
-
- random.seed(1)
- np.random.seed(1)
- de.config.set_seed(1)
-
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
- parser.add_argument('--train_url', type=str, default=None, help='Train output path')
- args_opt = parser.parse_args()
-
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
-
- local_data_url = 'data'
- local_train_url = 'ckpt'
-
- class Logger():
- '''Logger'''
- def __init__(self, logFile="log_max.txt"):
- self.terminal = sys.stdout
- self.log = open(logFile, 'a')
-
- def write(self, message):
- self.terminal.write(message)
- self.log.write(message)
- self.log.flush()
-
- def flush(self):
- pass
-
- sys.stdout = Logger("log/log.txt")
-
-
- if __name__ == '__main__':
- epoch_size = config.epoch_size
- net = resnet50(class_num=config.class_num, is_train=True)
- loss_net = NetWithLossClass(net)
-
- dataset = create_dataset("/home/dingfeifei/datasets/faces_webface_112x112_raw_image", \
- p=config.p, k=config.k)
-
- step_size = dataset.get_dataset_size()
- base_lr = config.learning_rate
- warm_up_epochs = config.lr_warmup_epochs
- lr_decay_epochs = config.lr_decay_epochs
- lr_decay_factor = config.lr_decay_factor
- lr_decay_steps = []
- lr_decay = []
- for i, v in enumerate(lr_decay_epochs):
- lr_decay_steps.append(v * step_size)
- lr_decay.append(base_lr * lr_decay_factor ** i)
- lr_1 = warmup_lr(base_lr, step_size*warm_up_epochs, step_size, warm_up_epochs)
- lr_2 = piecewise_constant_lr(lr_decay_steps, lr_decay)
- lr = lr_1 + lr_2
-
- train_net = TrainStepWrap(loss_net, lr, config.momentum)
- test_net = TestStepWrap(net)
-
- f = open("checkpoints/pretrained_resnet50.pkl", "rb")
- param_dict = pickle.load(f)
- load_param_into_net(net=train_net, parameter_dict=param_dict)
-
- model = Model(train_net, eval_network=test_net, metrics={"Accuracy": Accuracy()})
-
- loss_cb = LossMonitor()
- cb = [loss_cb]
- config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps, \
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="resnet", directory='checkpoints/', \
- config=config_ck)
- cb += [ckpt_cb]
- model.train(epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
|