|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- create train or eval dataset.
- """
- import mindspore.common.dtype as mstype
- import mindspore.dataset.engine as de
- import mindspore.dataset.vision.c_transforms as CV
- import mindspore.dataset.transforms.c_transforms as C
- from config import config
- from dataset.Dataset import Dataset
-
-
- def create_dataset(data_dir, p=16, k=8):
- """
- create a train or eval dataset
-
- Args:
- dataset_path(string): the path of dataset.
- p(int): randomly choose p classes from all classes.
- k(int): randomly choose k images from each of the chosen p classes.
- p * k is the batchsize.
-
- Returns:
- dataset
- """
- dataset = Dataset(data_dir)
- de_dataset = de.GeneratorDataset(dataset, ["image", "label1", "label2"])
-
- resize_height = config.image_height
- resize_width = config.image_width
- rescale = 1.0 / 255.0
- shift = 0.0
-
- resize_op = CV.Resize((resize_height, resize_width))
- rescale_op = CV.Rescale(rescale, shift)
- normalize_op = CV.Normalize([0.486, 0.459, 0.408], [0.229, 0.224, 0.225])
-
- change_swap_op = CV.HWC2CHW()
-
- trans = []
-
- trans += [resize_op, rescale_op, normalize_op, change_swap_op]
-
- type_cast_op_label1 = C.TypeCast(mstype.int32)
- type_cast_op_label2 = C.TypeCast(mstype.float32)
-
- de_dataset = de_dataset.map(input_columns="label1", operations=type_cast_op_label1)
- de_dataset = de_dataset.map(input_columns="label2", operations=type_cast_op_label2)
- de_dataset = de_dataset.map(input_columns="image", operations=trans)
- de_dataset = de_dataset.batch(p*k, drop_remainder=False)
-
- return de_dataset
|