|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Face detection train."""
- import os
- import time
- import datetime
- import argparse
- import numpy as np
-
- from mindspore import context
- from mindspore.train.loss_scale_manager import DynamicLossScaleManager
- from mindspore import Tensor
- from mindspore.nn import Momentum
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.context import ParallelMode
- from mindspore.train.callback import ModelCheckpoint, RunContext
- from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import dtype as mstype
-
-
- import mindspore.dataset as de
-
-
-
- from src.FaceDetection.yolov3 import HwYolov3 as backbone_HwYolov3
- from src.FaceDetection.yolo_loss import YoloLoss
- from src.network_define import BuildTrainNetworkV2, TrainOneStepWithLossScaleCell
- from src.lrsche_factory import warmup_step_new
- from src.logging import get_logger
- from src.data_preprocess import compose_map_func
- from src.config import config
-
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=devid)
-
-
- def parse_args():
- '''parse_args'''
- parser = argparse.ArgumentParser('Yolov3 Face Detection')
-
- parser.add_argument('--mindrecord_path', type=str, default='', help='dataset path, e.g. /home/data.mindrecord')
- parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
- parser.add_argument('--local_rank', type=int, default=0, help='current rank to support distributed')
- parser.add_argument('--world_size', type=int, default=8, help='current process number to support distributed')
-
- args, _ = parser.parse_known_args()
-
- return args
-
-
- def train(args):
- '''train'''
- print('=============yolov3 start trainging==================')
-
-
- # init distributed
- if args.world_size != 1:
- init()
- args.local_rank = get_rank()
- args.world_size = get_group_size()
-
- args.batch_size = config.batch_size
- args.warmup_lr = config.warmup_lr
- args.lr_rates = config.lr_rates
- args.lr_steps = config.lr_steps
- args.gamma = config.gamma
- args.weight_decay = config.weight_decay
- args.momentum = config.momentum
- args.max_epoch = config.max_epoch
- args.log_interval = config.log_interval
- args.ckpt_path = config.ckpt_path
- args.ckpt_interval = config.ckpt_interval
-
- args.outputs_dir = os.path.join(args.ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
- print('args.outputs_dir', args.outputs_dir)
-
- args.logger = get_logger(args.outputs_dir, args.local_rank)
-
- if args.world_size != 8:
- args.lr_steps = [i * 8 // args.world_size for i in args.lr_steps]
-
- if args.world_size == 1:
- args.weight_decay = 0.
-
- if args.world_size != 1:
- parallel_mode = ParallelMode.DATA_PARALLEL
- else:
- parallel_mode = ParallelMode.STAND_ALONE
-
- context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.world_size, gradients_mean=True)
- mindrecord_path = args.mindrecord_path
-
- num_classes = config.num_classes
- anchors = config.anchors
- anchors_mask = config.anchors_mask
- num_anchors_list = [len(x) for x in anchors_mask]
-
- momentum = args.momentum
- args.logger.info('train opt momentum:{}'.format(momentum))
-
- weight_decay = args.weight_decay * float(args.batch_size)
- args.logger.info('real weight_decay:{}'.format(weight_decay))
- lr_scale = args.world_size / 8
- args.logger.info('lr_scale:{}'.format(lr_scale))
-
- # dataloader
- args.logger.info('start create dataloader')
- epoch = args.max_epoch
- ds = de.MindDataset(mindrecord_path + "0", columns_list=["image", "annotation"], num_shards=args.world_size,
- shard_id=args.local_rank)
-
- ds = ds.map(input_columns=["image", "annotation"],
- output_columns=["image", "annotation", 'coord_mask_0', 'conf_pos_mask_0', 'conf_neg_mask_0',
- 'cls_mask_0', 't_coord_0', 't_conf_0', 't_cls_0', 'gt_list_0', 'coord_mask_1',
- 'conf_pos_mask_1', 'conf_neg_mask_1', 'cls_mask_1', 't_coord_1', 't_conf_1',
- 't_cls_1', 'gt_list_1', 'coord_mask_2', 'conf_pos_mask_2', 'conf_neg_mask_2',
- 'cls_mask_2', 't_coord_2', 't_conf_2', 't_cls_2', 'gt_list_2'],
- column_order=["image", "annotation", 'coord_mask_0', 'conf_pos_mask_0', 'conf_neg_mask_0',
- 'cls_mask_0', 't_coord_0', 't_conf_0', 't_cls_0', 'gt_list_0', 'coord_mask_1',
- 'conf_pos_mask_1', 'conf_neg_mask_1', 'cls_mask_1', 't_coord_1', 't_conf_1',
- 't_cls_1', 'gt_list_1', 'coord_mask_2', 'conf_pos_mask_2', 'conf_neg_mask_2',
- 'cls_mask_2', 't_coord_2', 't_conf_2', 't_cls_2', 'gt_list_2'],
- operations=compose_map_func, num_parallel_workers=16, python_multiprocessing=True)
-
- ds = ds.batch(args.batch_size, drop_remainder=True, num_parallel_workers=8)
-
- args.steps_per_epoch = ds.get_dataset_size()
- lr = warmup_step_new(args, lr_scale=lr_scale)
-
- ds = ds.repeat(epoch)
- args.logger.info('args.steps_per_epoch:{}'.format(args.steps_per_epoch))
- args.logger.info('args.world_size:{}'.format(args.world_size))
- args.logger.info('args.local_rank:{}'.format(args.local_rank))
- args.logger.info('end create dataloader')
- args.logger.save_args(args)
- args.logger.important_info('start create network')
- create_network_start = time.time()
-
- # backbone and loss
- network = backbone_HwYolov3(num_classes, num_anchors_list, args)
-
- criterion0 = YoloLoss(num_classes, anchors, anchors_mask[0], 64, 0, head_idx=0.0)
- criterion1 = YoloLoss(num_classes, anchors, anchors_mask[1], 32, 0, head_idx=1.0)
- criterion2 = YoloLoss(num_classes, anchors, anchors_mask[2], 16, 0, head_idx=2.0)
-
- # load pretrain model
- if os.path.isfile(args.pretrained):
- param_dict = load_checkpoint(args.pretrained)
- param_dict_new = {}
- for key, values in param_dict.items():
- if key.startswith('moments.'):
- continue
- elif key.startswith('network.'):
- param_dict_new[key[8:]] = values
- else:
- param_dict_new[key] = values
- load_param_into_net(network, param_dict_new)
- args.logger.info('load model {} success'.format(args.pretrained))
-
- train_net = BuildTrainNetworkV2(network, criterion0, criterion1, criterion2, args)
-
- # optimizer
- opt = Momentum(params=train_net.trainable_params(), learning_rate=Tensor(lr), momentum=momentum,
- weight_decay=weight_decay)
-
- # package training process
- train_net = TrainOneStepWithLossScaleCell(train_net, opt)
- train_net.set_broadcast_flag()
-
- # checkpoint
- ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
- train_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval, keep_checkpoint_max=ckpt_max_num)
- ckpt_cb = ModelCheckpoint(config=train_config, directory=args.outputs_dir, prefix='{}'.format(args.local_rank))
- cb_params = _InternalCallbackParam()
- cb_params.train_network = train_net
- cb_params.epoch_num = ckpt_max_num
- cb_params.cur_epoch_num = 1
- run_context = RunContext(cb_params)
- ckpt_cb.begin(run_context)
-
- train_net.set_train()
- t_end = time.time()
- t_epoch = time.time()
- old_progress = -1
- i = 0
- scale_manager = DynamicLossScaleManager(init_loss_scale=2 ** 10, scale_factor=2, scale_window=2000)
-
- for data in ds.create_tuple_iterator(output_numpy=True):
-
- batch_images = data[0]
- batch_labels = data[1]
- coord_mask_0 = data[2]
- conf_pos_mask_0 = data[3]
- conf_neg_mask_0 = data[4]
- cls_mask_0 = data[5]
- t_coord_0 = data[6]
- t_conf_0 = data[7]
- t_cls_0 = data[8]
- gt_list_0 = data[9]
- coord_mask_1 = data[10]
- conf_pos_mask_1 = data[11]
- conf_neg_mask_1 = data[12]
- cls_mask_1 = data[13]
- t_coord_1 = data[14]
- t_conf_1 = data[15]
- t_cls_1 = data[16]
- gt_list_1 = data[17]
- coord_mask_2 = data[18]
- conf_pos_mask_2 = data[19]
- conf_neg_mask_2 = data[20]
- cls_mask_2 = data[21]
- t_coord_2 = data[22]
- t_conf_2 = data[23]
- t_cls_2 = data[24]
- gt_list_2 = data[25]
-
- img_tensor = Tensor(batch_images, mstype.float32)
- coord_mask_tensor_0 = Tensor(coord_mask_0.astype(np.float32))
- conf_pos_mask_tensor_0 = Tensor(conf_pos_mask_0.astype(np.float32))
- conf_neg_mask_tensor_0 = Tensor(conf_neg_mask_0.astype(np.float32))
- cls_mask_tensor_0 = Tensor(cls_mask_0.astype(np.float32))
- t_coord_tensor_0 = Tensor(t_coord_0.astype(np.float32))
- t_conf_tensor_0 = Tensor(t_conf_0.astype(np.float32))
- t_cls_tensor_0 = Tensor(t_cls_0.astype(np.float32))
- gt_list_tensor_0 = Tensor(gt_list_0.astype(np.float32))
-
- coord_mask_tensor_1 = Tensor(coord_mask_1.astype(np.float32))
- conf_pos_mask_tensor_1 = Tensor(conf_pos_mask_1.astype(np.float32))
- conf_neg_mask_tensor_1 = Tensor(conf_neg_mask_1.astype(np.float32))
- cls_mask_tensor_1 = Tensor(cls_mask_1.astype(np.float32))
- t_coord_tensor_1 = Tensor(t_coord_1.astype(np.float32))
- t_conf_tensor_1 = Tensor(t_conf_1.astype(np.float32))
- t_cls_tensor_1 = Tensor(t_cls_1.astype(np.float32))
- gt_list_tensor_1 = Tensor(gt_list_1.astype(np.float32))
-
- coord_mask_tensor_2 = Tensor(coord_mask_2.astype(np.float32))
- conf_pos_mask_tensor_2 = Tensor(conf_pos_mask_2.astype(np.float32))
- conf_neg_mask_tensor_2 = Tensor(conf_neg_mask_2.astype(np.float32))
- cls_mask_tensor_2 = Tensor(cls_mask_2.astype(np.float32))
- t_coord_tensor_2 = Tensor(t_coord_2.astype(np.float32))
- t_conf_tensor_2 = Tensor(t_conf_2.astype(np.float32))
- t_cls_tensor_2 = Tensor(t_cls_2.astype(np.float32))
- gt_list_tensor_2 = Tensor(gt_list_2.astype(np.float32))
-
- scaling_sens = Tensor(scale_manager.get_loss_scale(), dtype=mstype.float32)
-
- loss0, overflow, _ = train_net(img_tensor, coord_mask_tensor_0, conf_pos_mask_tensor_0,
- conf_neg_mask_tensor_0, cls_mask_tensor_0, t_coord_tensor_0,
- t_conf_tensor_0, t_cls_tensor_0, gt_list_tensor_0,
- coord_mask_tensor_1, conf_pos_mask_tensor_1, conf_neg_mask_tensor_1,
- cls_mask_tensor_1, t_coord_tensor_1, t_conf_tensor_1,
- t_cls_tensor_1, gt_list_tensor_1, coord_mask_tensor_2,
- conf_pos_mask_tensor_2, conf_neg_mask_tensor_2,
- cls_mask_tensor_2, t_coord_tensor_2, t_conf_tensor_2,
- t_cls_tensor_2, gt_list_tensor_2, scaling_sens)
-
- overflow = np.all(overflow.asnumpy())
- if overflow:
- scale_manager.update_loss_scale(overflow)
- else:
- scale_manager.update_loss_scale(False)
- args.logger.info('rank[{}], iter[{}], loss[{}], overflow:{}, loss_scale:{}, lr:{}, batch_images:{}, '
- 'batch_labels:{}'.format(args.local_rank, i, loss0, overflow, scaling_sens, lr[i],
- batch_images.shape, batch_labels.shape))
-
- # save ckpt
- cb_params.cur_step_num = i + 1 # current step number
- cb_params.batch_num = i + 2
- if args.local_rank == 0:
- ckpt_cb.step_end(run_context)
-
- # save Log
- if i == 0:
- time_for_graph_compile = time.time() - create_network_start
- args.logger.important_info('Yolov3, graph compile time={:.2f}s'.format(time_for_graph_compile))
-
- if i % args.steps_per_epoch == 0:
- cb_params.cur_epoch_num += 1
-
- if i % args.log_interval == 0 and args.local_rank == 0:
- time_used = time.time() - t_end
- epoch = int(i / args.steps_per_epoch)
- fps = args.batch_size * (i - old_progress) * args.world_size / time_used
- args.logger.info('epoch[{}], iter[{}], loss:[{}], {:.2f} imgs/sec'.format(epoch, i, loss0, fps))
- t_end = time.time()
- old_progress = i
-
- if i % args.steps_per_epoch == 0 and args.local_rank == 0:
- epoch_time_used = time.time() - t_epoch
- epoch = int(i / args.steps_per_epoch)
- fps = args.batch_size * args.world_size * args.steps_per_epoch / epoch_time_used
- args.logger.info('=================================================')
- args.logger.info('epoch time: epoch[{}], iter[{}], {:.2f} imgs/sec'.format(epoch, i, fps))
- args.logger.info('=================================================')
- t_epoch = time.time()
-
- i = i + 1
-
- args.logger.info('=============yolov3 training finished==================')
-
-
- if __name__ == "__main__":
- arg = parse_args()
- train(arg)
|