|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Convert ckpt to air."""
- import os
- import argparse
- import numpy as np
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
-
- from src.FaceDetection.yolov3 import HwYolov3 as backbone_HwYolov3
- from src.config import config
-
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=devid)
-
-
- def save_air(args):
- '''save air'''
- print('============= yolov3 start save air ==================')
-
-
- num_classes = config.num_classes
- anchors_mask = config.anchors_mask
- num_anchors_list = [len(x) for x in anchors_mask]
-
- network = backbone_HwYolov3(num_classes, num_anchors_list, args)
-
- if os.path.isfile(args.pretrained):
- param_dict = load_checkpoint(args.pretrained)
- param_dict_new = {}
- for key, values in param_dict.items():
- if key.startswith('moments.'):
- continue
- elif key.startswith('network.'):
- param_dict_new[key[8:]] = values
- else:
- param_dict_new[key] = values
- load_param_into_net(network, param_dict_new)
- print('load model {} success'.format(args.pretrained))
-
- input_data = np.random.uniform(low=0, high=1.0, size=(args.batch_size, 3, 448, 768)).astype(np.float32)
-
- tensor_input_data = Tensor(input_data)
- export(network, tensor_input_data,
- file_name=args.pretrained.replace('.ckpt', '_' + str(args.batch_size) + 'b.air'), file_format='AIR')
-
- print("export model success.")
-
-
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='Convert ckpt to air')
- parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
- parser.add_argument('--batch_size', type=int, default=8, help='batch size')
-
- arg = parser.parse_args()
- save_air(arg)
|