|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Face detection eval."""
- import os
- import argparse
- import matplotlib.pyplot as plt
-
- from mindspore import context
- from mindspore import Tensor
- from mindspore.context import ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import dtype as mstype
- import mindspore.dataset as de
-
-
-
-
- from src.data_preprocess import SingleScaleTrans
- from src.config import config
- from src.FaceDetection.yolov3 import HwYolov3 as backbone_HwYolov3
- from src.FaceDetection import voc_wrapper
- from src.network_define import BuildTestNetwork, get_bounding_boxes, tensor_to_brambox, \
- parse_gt_from_anno, parse_rets, calc_recall_precision_ap
-
- plt.switch_backend('agg')
- devid = int(os.getenv('DEVICE_ID'))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=devid)
-
-
- def parse_args():
- '''parse_args'''
- parser = argparse.ArgumentParser('Yolov3 Face Detection')
-
- parser.add_argument('--mindrecord_path', type=str, default='', help='dataset path, e.g. /home/data.mindrecord')
- parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
- parser.add_argument('--local_rank', type=int, default=0, help='current rank to support distributed')
- parser.add_argument('--world_size', type=int, default=1, help='current process number to support distributed')
-
- arg, _ = parser.parse_known_args()
-
- return arg
-
-
- if __name__ == "__main__":
- args = parse_args()
-
- print('=============yolov3 start evaluating==================')
-
- # logger
- args.batch_size = config.batch_size
- args.input_shape = config.input_shape
- args.result_path = config.result_path
- args.conf_thresh = config.conf_thresh
- args.nms_thresh = config.nms_thresh
-
- context.set_auto_parallel_context(parallel_mode=ParallelMode.STAND_ALONE, device_num=args.world_size,
- gradients_mean=True)
- mindrecord_path = args.mindrecord_path
- print('Loading data from {}'.format(mindrecord_path))
-
- num_classes = config.num_classes
- if num_classes > 1:
- raise NotImplementedError('num_classes > 1: Yolov3 postprocess not implemented!')
-
- anchors = config.anchors
- anchors_mask = config.anchors_mask
- num_anchors_list = [len(x) for x in anchors_mask]
-
- reduction_0 = 64.0
- reduction_1 = 32.0
- reduction_2 = 16.0
- labels = ['face']
- classes = {0: 'face'}
-
- # dataloader
- ds = de.MindDataset(mindrecord_path + "0", columns_list=["image", "annotation", "image_name", "image_size"])
-
- single_scale_trans = SingleScaleTrans(resize=args.input_shape)
-
- ds = ds.batch(args.batch_size, per_batch_map=single_scale_trans,
- input_columns=["image", "annotation", "image_name", "image_size"], num_parallel_workers=8)
-
- args.steps_per_epoch = ds.get_dataset_size()
-
- # backbone
- network = backbone_HwYolov3(num_classes, num_anchors_list, args)
-
- # load pretrain model
- if os.path.isfile(args.pretrained):
- param_dict = load_checkpoint(args.pretrained)
- param_dict_new = {}
- for key, values in param_dict.items():
- if key.startswith('moments.'):
- continue
- elif key.startswith('network.'):
- param_dict_new[key[8:]] = values
- else:
- param_dict_new[key] = values
- load_param_into_net(network, param_dict_new)
- print('load model {} success'.format(args.pretrained))
- else:
- print('load model {} failed, please check the path of model, evaluating end'.format(args.pretrained))
- exit(0)
-
- ds = ds.repeat(1)
-
- det = {}
- img_size = {}
- img_anno = {}
-
- model_name = args.pretrained.split('/')[-1].replace('.ckpt', '')
- result_path = os.path.join(args.result_path, model_name)
- if os.path.exists(result_path):
- pass
- if not os.path.isdir(result_path):
- os.makedirs(result_path, exist_ok=True)
-
- # result file
- ret_files_set = {
- 'face': os.path.join(result_path, 'comp4_det_test_face_rm5050.txt'),
- }
-
- test_net = BuildTestNetwork(network, reduction_0, reduction_1, reduction_2, anchors, anchors_mask, num_classes,
- args)
-
- print('conf_thresh:', args.conf_thresh)
-
- eval_times = 0
-
- for data in ds.create_tuple_iterator(output_numpy=True):
- batch_images = data[0]
- batch_labels = data[1]
- batch_image_name = data[2]
- batch_image_size = data[3]
- eval_times += 1
-
- img_tensor = Tensor(batch_images, mstype.float32)
-
- dets = []
- tdets = []
-
- coords_0, cls_scores_0, coords_1, cls_scores_1, coords_2, cls_scores_2 = test_net(img_tensor)
-
- boxes_0, boxes_1, boxes_2 = get_bounding_boxes(coords_0, cls_scores_0, coords_1, cls_scores_1, coords_2,
- cls_scores_2, args.conf_thresh, args.input_shape,
- num_classes)
-
- converted_boxes_0, converted_boxes_1, converted_boxes_2 = tensor_to_brambox(boxes_0, boxes_1, boxes_2,
- args.input_shape, labels)
-
- tdets.append(converted_boxes_0)
- tdets.append(converted_boxes_1)
- tdets.append(converted_boxes_2)
-
- batch = len(tdets[0])
- for b in range(batch):
- single_dets = []
- for op in range(3):
- single_dets.extend(tdets[op][b])
- dets.append(single_dets)
-
- det.update({batch_image_name[k].decode('UTF-8'): v for k, v in enumerate(dets)})
- img_size.update({batch_image_name[k].decode('UTF-8'): v for k, v in enumerate(batch_image_size)})
- img_anno.update({batch_image_name[k].decode('UTF-8'): v for k, v in enumerate(batch_labels)})
-
- print('eval times:', eval_times)
- print('batch size: ', args.batch_size)
-
- netw, neth = args.input_shape
- reorg_dets = voc_wrapper.reorg_detection(det, netw, neth, img_size)
- voc_wrapper.gen_results(reorg_dets, result_path, img_size, args.nms_thresh)
-
- # compute mAP
- ground_truth = parse_gt_from_anno(img_anno, classes)
-
- ret_list = parse_rets(ret_files_set)
- iou_thr = 0.5
- evaluate = calc_recall_precision_ap(ground_truth, ret_list, iou_thr)
-
- aps_str = ''
- for cls in evaluate:
- per_line, = plt.plot(evaluate[cls]['recall'], evaluate[cls]['precision'], 'b-')
- per_line.set_label('%s:AP=%.3f' % (cls, evaluate[cls]['ap']))
- aps_str += '_%s_AP_%.3f' % (cls, evaluate[cls]['ap'])
- plt.plot([i / 1000.0 for i in range(1, 1001)], [i / 1000.0 for i in range(1, 1001)], 'y--')
- plt.axis([0, 1.2, 0, 1.2])
- plt.xlabel('recall')
- plt.ylabel('precision')
- plt.grid()
-
- plt.legend()
- plt.title('PR')
-
- # save mAP
- ap_save_path = os.path.join(result_path, result_path.replace('/', '_') + aps_str + '.png')
- print('Saving {}'.format(ap_save_path))
- plt.savefig(ap_save_path)
-
- print('=============yolov3 evaluating finished==================')
|