|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export checkpoint file into air models"""
-
- import re
- import argparse
- import numpy as np
-
- from mindspore import Tensor, context
- from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
-
- from src.td_config import td_student_net_cfg
- from src.tinybert_model import BertModelCLS, BertModelNER
-
- parser = argparse.ArgumentParser(description='tinybert task distill')
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--ckpt_file", type=str, required=True, help="tinybert ckpt file.")
- parser.add_argument("--file_name", type=str, default="tinybert", help="output file name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
- parser.add_argument("--device_target", type=str, default="Ascend",
- choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
- parser.add_argument("--task_type", type=str, default="classification", choices=["classification", "ner"],
- help="The type of the task to train.")
- parser.add_argument("--task_name", type=str, default="", choices=["SST-2", "QNLI", "MNLI", "TNEWS", "CLUENER"],
- help="The name of the task to train.")
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- DEFAULT_NUM_LABELS = 2
- DEFAULT_SEQ_LENGTH = 128
- DEFAULT_BS = 32
- task_params = {"SST-2": {"num_labels": 2, "seq_length": 64},
- "QNLI": {"num_labels": 2, "seq_length": 128},
- "MNLI": {"num_labels": 3, "seq_length": 128},
- "TNEWS": {"num_labels": 15, "seq_length": 128},
- "CLUENER": {"num_labels": 43, "seq_length": 128}}
-
- class Task:
- """
- Encapsulation class of get the task parameter.
- """
- def __init__(self, task_name):
- self.task_name = task_name
-
- @property
- def num_labels(self):
- if self.task_name in task_params and "num_labels" in task_params[self.task_name]:
- return task_params[self.task_name]["num_labels"]
- return DEFAULT_NUM_LABELS
-
- @property
- def seq_length(self):
- if self.task_name in task_params and "seq_length" in task_params[self.task_name]:
- return task_params[self.task_name]["seq_length"]
- return DEFAULT_SEQ_LENGTH
-
- if __name__ == '__main__':
- task = Task(args.task_name)
- td_student_net_cfg.seq_length = task.seq_length
- td_student_net_cfg.batch_size = DEFAULT_BS
- if args.task_type == "classification":
- eval_model = BertModelCLS(td_student_net_cfg, False, task.num_labels, 0.0, phase_type="student")
- elif args.task_type == "ner":
- eval_model = BertModelNER(td_student_net_cfg, False, task.num_labels, 0.0, phase_type="student")
- else:
- raise ValueError(f"Not support task type: {args.task_type}")
-
- param_dict = load_checkpoint(args.ckpt_file)
- new_param_dict = {}
- for key, value in param_dict.items():
- new_key = re.sub('tinybert_', 'bert_', key)
- new_key = re.sub('^bert.', '', new_key)
- new_param_dict[new_key] = value
-
- load_param_into_net(eval_model, new_param_dict)
- eval_model.set_train(False)
-
- input_ids = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32))
- token_type_id = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32))
- input_mask = Tensor(np.zeros((td_student_net_cfg.batch_size, task.seq_length), np.int32))
-
- input_data = [input_ids, token_type_id, input_mask]
- export(eval_model, *input_data, file_name=args.file_name, file_format=args.file_format)
|