|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############export checkpoint file into air, onnx, mindir models#################
- python export.py
- """
- import argparse
- import numpy as np
-
- from mindspore import Tensor, load_checkpoint, load_param_into_net, export, context
-
- from src.config import cfg_mr, cfg_subj, cfg_sst2
- from src.textcnn import TextCNN
- from src.dataset import MovieReview, SST2, Subjectivity
-
- parser = argparse.ArgumentParser(description='TextCNN export')
- parser.add_argument("--device_id", type=int, default=0, help="device id")
- parser.add_argument("--ckpt_file", type=str, required=True, help="checkpoint file path.")
- parser.add_argument("--file_name", type=str, default="textcnn", help="output file name.")
- parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
- parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
- help="device target")
- parser.add_argument('--dataset', type=str, default='MR', choices=['MR', 'SUBJ', 'SST2'],
- help='dataset name.')
-
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- if __name__ == '__main__':
-
- if args.dataset == 'MR':
- cfg = cfg_mr
- instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
- elif args.dataset == 'SUBJ':
- cfg = cfg_subj
- instance = Subjectivity(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
- elif args.dataset == 'SST2':
- cfg = cfg_sst2
- instance = SST2(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
- else:
- raise ValueError("dataset is not support.")
-
- net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len,
- num_classes=cfg.num_classes, vec_length=cfg.vec_length)
-
- param_dict = load_checkpoint(args.ckpt_file)
- load_param_into_net(net, param_dict)
-
- input_arr = Tensor(np.ones([cfg.batch_size, cfg.word_len], np.int32))
- export(net, input_arr, file_name=args.file_name, file_format=args.file_format)
|