|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """export checkpoint file into air models"""
-
- import argparse
- import numpy as np
-
- from mindspore import Tensor, context
- from mindspore.common import dtype as mstype
- from mindspore.train.serialization import export
-
- from src.utils import Dictionary
- from src.utils.load_weights import load_infer_weights
- from src.transformer.transformer_for_infer import TransformerInferModel
- from config import TransformerConfig
-
- parser = argparse.ArgumentParser(description="mass export")
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--file_name", type=str, default="mass", help="output file name.")
- parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
- parser.add_argument("--device_target", type=str, default="Ascend",
- choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
- parser.add_argument('--gigaword_infer_config', type=str, required=True, help='gigaword config file')
- parser.add_argument('--vocab_file', type=str, required=True, help='vocabulary file')
- args = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
- if args.device_target == "Ascend":
- context.set_context(device_id=args.device_id)
-
- def get_config(config_file):
- tfm_config = TransformerConfig.from_json_file(config_file)
- tfm_config.compute_type = mstype.float16
- tfm_config.dtype = mstype.float32
-
- return tfm_config
-
- if __name__ == '__main__':
- vocab = Dictionary.load_from_persisted_dict(args.vocab_file)
- config = get_config(args.gigaword_infer_config)
- dec_len = config.max_decode_length
-
- tfm_model = TransformerInferModel(config=config, use_one_hot_embeddings=False)
- tfm_model.init_parameters_data()
-
- params = tfm_model.trainable_params()
- weights = load_infer_weights(config)
-
- for param in params:
- value = param.data
- name = param.name
-
- if name not in weights:
- raise ValueError(f'{name} is not found in weights.')
-
- with open('weight_after_deal.txt', 'a+') as f:
- weights_name = name
- f.write(weights_name + '\n')
-
- if isinstance(value, Tensor):
- if weights_name in weights:
- assert weights_name in weights
- param.set_data(Tensor(weights[weights_name], mstype.float32))
- else:
- raise ValueError(f'{weights_name} is not found in checkpoint')
- else:
- raise TypeError(f'Type of {weights_name} is not Tensor')
-
- print(' | Load weights successfully.')
- tfm_model.set_train(False)
-
- source_ids = Tensor(np.ones((1, config.seq_length)).astype(np.int32))
- source_mask = Tensor(np.ones((1, config.seq_length)).astype(np.int32))
-
- export(tfm_model, source_ids, source_mask, file_name=args.file_name, file_format=args.file_format)
|