|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- #################train lstm example on aclImdb########################
- """
- import argparse
- import os
-
- import numpy as np
-
- from src.config import lstm_cfg, lstm_cfg_ascend, lstm_cfg_ascend_8p
- from src.dataset import convert_to_mindrecord
- from src.dataset import lstm_create_dataset
- from src.lr_schedule import get_lr
- from src.lstm import SentimentNet
- from mindspore import Tensor, nn, Model, context
- from mindspore.nn import Accuracy
- from mindspore.train.callback import LossMonitor, CheckpointConfig, ModelCheckpoint, TimeMonitor
- from mindspore.train.serialization import load_param_into_net, load_checkpoint
- from mindspore.communication.management import init, get_rank
- from mindspore.context import ParallelMode
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
- parser.add_argument('--preprocess', type=str, default='false', choices=['true', 'false'],
- help='whether to preprocess data.')
- parser.add_argument('--aclimdb_path', type=str, default="./aclImdb",
- help='path where the dataset is stored.')
- parser.add_argument('--glove_path', type=str, default="./glove",
- help='path where the GloVe is stored.')
- parser.add_argument('--preprocess_path', type=str, default="./preprocess",
- help='path where the pre-process data is stored.')
- parser.add_argument('--ckpt_path', type=str, default="./",
- help='the path to save the checkpoint file.')
- parser.add_argument('--pre_trained', type=str, default=None,
- help='the pretrained checkpoint file path.')
- parser.add_argument('--device_target', type=str, default="Ascend", choices=['GPU', 'CPU', 'Ascend'],
- help='the target device to run, support "GPU", "CPU". Default: "Ascend".')
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"],
- help="Run distribute, default is false.")
- args = parser.parse_args()
-
- context.set_context(
- mode=context.GRAPH_MODE,
- save_graphs=False,
- device_target=args.device_target)
-
- rank = 0
- device_num = 1
-
- if args.device_target == 'Ascend':
- cfg = lstm_cfg_ascend
- if args.distribute == "true":
- cfg = lstm_cfg_ascend_8p
- init()
- device_num = args.device_num
- rank = get_rank()
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
- device_num=device_num)
- else:
- cfg = lstm_cfg
-
- if args.preprocess == "true":
- print("============== Starting Data Pre-processing ==============")
- convert_to_mindrecord(cfg.embed_size, args.aclimdb_path, args.preprocess_path, args.glove_path)
-
- embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32)
- # DynamicRNN in this network on Ascend platform only support the condition that the shape of input_size
- # and hiddle_size is multiples of 16, this problem will be solved later.
- if args.device_target == 'Ascend':
- pad_num = int(np.ceil(cfg.embed_size / 16) * 16 - cfg.embed_size)
- if pad_num > 0:
- embedding_table = np.pad(embedding_table, [(0, 0), (0, pad_num)], 'constant')
- cfg.embed_size = int(np.ceil(cfg.embed_size / 16) * 16)
- network = SentimentNet(vocab_size=embedding_table.shape[0],
- embed_size=cfg.embed_size,
- num_hiddens=cfg.num_hiddens,
- num_layers=cfg.num_layers,
- bidirectional=cfg.bidirectional,
- num_classes=cfg.num_classes,
- weight=Tensor(embedding_table),
- batch_size=cfg.batch_size)
- # pre_trained
- if args.pre_trained:
- load_param_into_net(network, load_checkpoint(args.pre_trained))
-
- ds_train = lstm_create_dataset(args.preprocess_path, cfg.batch_size, 1, device_num=device_num, rank=rank)
-
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
- if cfg.dynamic_lr:
- lr = Tensor(get_lr(global_step=cfg.global_step,
- lr_init=cfg.lr_init, lr_end=cfg.lr_end, lr_max=cfg.lr_max,
- warmup_epochs=cfg.warmup_epochs,
- total_epochs=cfg.num_epochs,
- steps_per_epoch=ds_train.get_dataset_size(),
- lr_adjust_epoch=cfg.lr_adjust_epoch))
- else:
- lr = cfg.learning_rate
-
- opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum)
- loss_cb = LossMonitor()
-
- model = Model(network, loss, opt, {'acc': Accuracy()})
-
- print("============== Starting Training ==============")
- config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
- keep_checkpoint_max=cfg.keep_checkpoint_max)
- ckpoint_cb = ModelCheckpoint(prefix="lstm", directory=args.ckpt_path, config=config_ck)
- time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
- if args.device_target == "CPU":
- model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb], dataset_sink_mode=False)
- else:
- model.train(cfg.num_epochs, ds_train, callbacks=[time_cb, ckpoint_cb, loss_cb])
- print("============== Training Success ==============")
|