|
- # Copyright 2020-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- ##############export checkpoint file into mindir model#################
- python export.py
- """
- import argparse
- import os
-
- import numpy as np
-
- from mindspore import Tensor, context
- from mindspore import export, load_checkpoint, load_param_into_net
- from src.config import lstm_cfg, lstm_cfg_ascend
- from src.lstm import SentimentNet
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='MindSpore LSTM Exporter')
- parser.add_argument('--preprocess_path', type=str, default='./preprocess',
- help='path where the pre-process data is stored.')
- parser.add_argument('--ckpt_file', type=str, required=True, help='lstm ckpt file.')
- parser.add_argument("--device_id", type=int, default=0, help="Device id")
- parser.add_argument("--file_name", type=str, default="lstm", help="output file name.")
- parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default='AIR', help='file format')
- parser.add_argument('--device_target', type=str, default="Ascend", choices=['GPU', 'CPU', 'Ascend'],
- help='the target device to run, support "GPU", "CPU". Default: "Ascend".')
- args = parser.parse_args()
-
- context.set_context(
- mode=context.GRAPH_MODE,
- save_graphs=False,
- device_target=args.device_target,
- device_id=args.device_id)
-
- if args.device_target == 'Ascend':
- cfg = lstm_cfg_ascend
- else:
- cfg = lstm_cfg
-
- embedding_table = np.loadtxt(os.path.join(args.preprocess_path, "weight.txt")).astype(np.float32)
-
- if args.device_target == 'Ascend':
- pad_num = int(np.ceil(cfg.embed_size / 16) * 16 - cfg.embed_size)
- if pad_num > 0:
- embedding_table = np.pad(embedding_table, [(0, 0), (0, pad_num)], 'constant')
- cfg.embed_size = int(np.ceil(cfg.embed_size / 16) * 16)
-
- network = SentimentNet(vocab_size=embedding_table.shape[0],
- embed_size=cfg.embed_size,
- num_hiddens=cfg.num_hiddens,
- num_layers=cfg.num_layers,
- bidirectional=cfg.bidirectional,
- num_classes=cfg.num_classes,
- weight=Tensor(embedding_table),
- batch_size=cfg.batch_size)
-
- param_dict = load_checkpoint(args.ckpt_file)
- load_param_into_net(network, param_dict)
-
- input_arr = Tensor(np.random.uniform(0.0, 1e5, size=[cfg.batch_size, 500]).astype(np.int32))
- export(network, input_arr, file_name=args.file_name, file_format=args.file_format)
|