|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- GPT train script
- """
-
-
- import os
- import argparse
- from mindspore import context
- from mindspore.train.model import Model
- import mindspore.communication.management as D
- from mindspore.context import ParallelMode
- import mindspore.nn as nn
- from mindspore.train.callback import TimeMonitor, LossMonitor, ModelCheckpoint, CheckpointConfig
- from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
- import mindspore.common.dtype as mstype
- from mindspore.common import set_seed
- from src.dataset import create_dataset
- from src.gpt import GPT, GPTWithLoss, CrossEntropyLoss
- from src.gpt_wrapcell import GPTTrainOneStepWithLossScaleCell
- from src.utils import GPTConfig, LearningRate
-
- def run_train():
- """train function for GPT"""
- parser = argparse.ArgumentParser(description="GPT training")
- parser.add_argument('--device_id', type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"],
- help="Run distribute, default is false.")
- parser.add_argument("--optimizer", type=str, default="adam", choices=["adam", "lamb"],
- help="select which optimizer to be used, default adam")
- parser.add_argument("--epoch_size", type=int, default=10, help="Epoch size, default is 10.")
- parser.add_argument("--warmup_step", type=int, default=10000, help="Warmup step, default is 10000.")
- parser.add_argument("--data_path", type=str, default="", help="Data path of your MindRecord files.")
- parser.add_argument("--start_lr", type=float, default="5e-5", help="Start learning rate, default is 5e-5.")
- parser.add_argument("--end_lr", type=float, default="1e-10", help="End learning rate, default is 1e-10.")
- parser.add_argument("--sink_size", type=int, default=100, help="Sink size for every iteration, default is 100")
-
-
- args_opt = parser.parse_args()
- device_id = int(os.getenv("DEVICE_ID"))
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id)
- if args_opt.distribute == "true":
- D.init()
- device_num = args_opt.device_num
- rank = device_id % device_num
- print("device_id is {}, rank_id is {}".format(device_id, rank))
-
- context.reset_auto_parallel_context()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
- device_num=device_num)
-
- else:
- rank = 0
- device_num = 1
-
- config = GPTConfig(batch_size=4,
- seq_length=1024,
- vocab_size=50257,
- embedding_size=1024,
- num_layers=24,
- num_heads=16,
- expand_ratio=4,
- post_layernorm_residual=False,
- dropout_rate=0.1,
- compute_dtype=mstype.float16,
- use_past=False)
- gpt = GPT(config)
- loss = CrossEntropyLoss(config)
- gpt_with_loss = GPTWithLoss(gpt, loss)
-
- ds = create_dataset(config.batch_size, data_path=args_opt.data_path, device_num=device_num, rank=rank)
-
-
- epoch_num = args_opt.epoch_size
- step_per_epoch = ds.get_dataset_size()
-
- lr = LearningRate(learning_rate=args_opt.start_lr,
- end_learning_rate=args_opt.end_lr,
- warmup_steps=args_opt.warmup_step,
- decay_steps=epoch_num*step_per_epoch)
-
- decay_filter = lambda x: 'layernorm' not in x.name.lower() and "bias" not in x.name.lower()
- params = gpt.trainable_params()
- decay_params = list(filter(decay_filter, params))
- other_params = list(filter(lambda x: not decay_filter(x), params))
- group_params = [{'params': decay_params, 'weight_decay': 1e-2},
- {'params': other_params, 'weight_decay': 0.0},
- {'order_params': params}]
-
- if args_opt.optimizer == "lamb":
- optimizer = nn.Lamb(group_params, learning_rate=lr)
- else:
- optimizer = nn.AdamWeightDecay(group_params, learning_rate=lr)
-
- callback_size = args_opt.sink_size
- actual_epoch_num = int(epoch_num * step_per_epoch/callback_size)
- callback = [TimeMonitor(callback_size), LossMonitor(callback_size)]
-
- config_ck = CheckpointConfig(save_checkpoint_steps=step_per_epoch, keep_checkpoint_max=1)
- ckpoint_cb = ModelCheckpoint(prefix="GPT2", config=config_ck)
- callback.append(ckpoint_cb)
-
-
- update_cell = DynamicLossScaleUpdateCell(loss_scale_value=1024,
- scale_factor=2,
- scale_window=1000)
-
- gpt_with_grads = GPTTrainOneStepWithLossScaleCell(gpt_with_loss, optimizer=optimizer,
- scale_update_cell=update_cell)
-
-
- model = Model(gpt_with_grads)
- model.train(actual_epoch_num, ds, callbacks=callback, sink_size=callback_size)
-
-
- if __name__ == "__main__":
- set_seed(12315)
- run_train()
|