|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """eval Xception."""
- import argparse
- from mindspore import context, nn
- from mindspore.train.model import Model
- from mindspore.common import set_seed
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.Xception import xception
- from src.config import config_gpu, config_ascend
- from src.dataset import create_dataset
- from src.loss import CrossEntropySmooth
-
- set_seed(1)
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='Image classification')
- parser.add_argument('--device_target', type=str, default='GPU', help='Device target')
- parser.add_argument('--device_id', type=int, default=0, help='Device id')
- parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
- parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
-
- args_opt = parser.parse_args()
- if args_opt.device_target == "Ascend":
- config = config_ascend
- elif args_opt.device_target == "GPU":
- config = config_gpu
- else:
- raise ValueError("Unsupported device_target.")
-
- context.set_context(device_id=args_opt.device_id)
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
-
- # create dataset
- dataset = create_dataset(args_opt.dataset_path, do_train=False, batch_size=config.batch_size, device_num=1, rank=0)
- step_size = dataset.get_dataset_size()
-
- # define net
- net = xception(class_num=config.class_num)
-
- # load checkpoint
- param_dict = load_checkpoint(args_opt.checkpoint_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
-
- # define loss, model
- loss = CrossEntropySmooth(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
-
- # define model
- eval_metrics = {'Loss': nn.Loss(),
- 'Top_1_Acc': nn.Top1CategoricalAccuracy(),
- 'Top_5_Acc': nn.Top5CategoricalAccuracy()}
- model = Model(net, loss_fn=loss, metrics=eval_metrics)
-
- # eval model
- res = model.eval(dataset, dataset_sink_mode=True)
- print("result:", res, "ckpt=", args_opt.checkpoint_path)
|