|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """srcnn evaluation"""
- import argparse
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.train.model import Model
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- from src.config import srcnn_cfg as config
- from src.dataset import create_eval_dataset
- from src.srcnn import SRCNN
- from src.metric import SRCNNpsnr
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description="srcnn eval")
- parser.add_argument('--dataset_path', type=str, required=True, help="Dataset, default is None.")
- parser.add_argument('--checkpoint_path', type=str, required=True, help="checkpoint file path")
- parser.add_argument('--device_target', type=str, default='GPU', choices=("GPU"),
- help="Device target, support GPU.")
- args, _ = parser.parse_known_args()
-
- if args.device_target == "GPU":
- context.set_context(mode=context.GRAPH_MODE,
- device_target=args.device_target,
- save_graphs=False)
- else:
- raise ValueError("Unsupported device target.")
-
- eval_ds = create_eval_dataset(args.dataset_path)
-
- net = SRCNN()
- lr = Tensor(config.lr, ms.float32)
- opt = nn.Adam(params=net.trainable_params(), learning_rate=lr, eps=1e-07)
- loss = nn.MSELoss(reduction='mean')
- param_dict = load_checkpoint(args.checkpoint_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
- model = Model(net, loss_fn=loss, optimizer=opt, metrics={'PSNR': SRCNNpsnr()})
-
- res = model.eval(eval_ds, dataset_sink_mode=False)
- print("result ", res)
|