|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Train retinanet and get checkpoint files."""
-
- import os
- import argparse
- import ast
- import mindspore.nn as nn
- from mindspore import context, Tensor
- from mindspore.communication.management import init, get_rank
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor, Callback
- from mindspore.train import Model
- from mindspore.context import ParallelMode
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from mindspore.common import set_seed
- from src.retinanet import retinanetWithLossCell, TrainingWrapper, retinanet50, resnet50
- from src.config import config
- from src.dataset import create_retinanet_dataset
- from src.lr_schedule import get_lr
- from src.init_params import init_net_param, filter_checkpoint_parameter
-
-
- set_seed(1)
- class Monitor(Callback):
- """
- Monitor loss and time.
-
- Args:
- lr_init (numpy array): train lr
-
- Returns:
- None
-
- Examples:
- >>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy())
- """
-
- def __init__(self, lr_init=None):
- super(Monitor, self).__init__()
- self.lr_init = lr_init
- self.lr_init_len = len(lr_init)
- def step_end(self, run_context):
- cb_params = run_context.original_args()
- print("lr:[{:8.6f}]".format(self.lr_init[cb_params.cur_step_num-1]), flush=True)
-
- def main():
- parser = argparse.ArgumentParser(description="retinanet training")
-
- parser.add_argument("--distribute", type=ast.literal_eval, default=False,
- help="Run distribute, default is False.")
- parser.add_argument("--workers", type=int, default=24, help="Num parallel workers.")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
- parser.add_argument("--lr", type=float, default=0.1, help="Learning rate, default is 0.1.")
- parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
- parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
- parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
- parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
- parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
- parser.add_argument("--save_checkpoint_epochs", type=int, default=1, help="Save checkpoint epochs, default is 1.")
- parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
- parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
- help="Filter weight parameters, default is False.")
- parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
- help="run platform, only support Ascend.")
- args_opt = parser.parse_args()
-
- if args_opt.run_platform == "Ascend":
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
- if args_opt.distribute:
- if os.getenv("DEVICE_ID", "not_set").isdigit():
- context.set_context(device_id=int(os.getenv("DEVICE_ID")))
- init()
- device_num = args_opt.device_num
- rank = get_rank()
- context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
- device_num=device_num)
- else:
- rank = 0
- device_num = 1
- context.set_context(device_id=args_opt.device_id)
-
- else:
- raise ValueError("Unsupported platform.")
-
- mindrecord_file = os.path.join(config.mindrecord_dir, "retinanet.mindrecord0")
-
- loss_scale = float(args_opt.loss_scale)
-
- # When create MindDataset, using the fitst mindrecord file, such as retinanet.mindrecord0.
- dataset = create_retinanet_dataset(mindrecord_file, repeat_num=1,
- num_parallel_workers=args_opt.workers,
- batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
-
- dataset_size = dataset.get_dataset_size()
- print("Create dataset done!")
-
-
- backbone = resnet50(config.num_classes)
- retinanet = retinanet50(backbone, config)
- net = retinanetWithLossCell(retinanet, config)
- init_net_param(net)
-
- if args_opt.pre_trained:
- if args_opt.pre_trained_epoch_size <= 0:
- raise KeyError("pre_trained_epoch_size must be greater than 0.")
- param_dict = load_checkpoint(args_opt.pre_trained)
- if args_opt.filter_weight:
- filter_checkpoint_parameter(param_dict)
- load_param_into_net(net, param_dict)
-
- lr = Tensor(get_lr(global_step=config.global_step,
- lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
- warmup_epochs1=config.warmup_epochs1, warmup_epochs2=config.warmup_epochs2,
- warmup_epochs3=config.warmup_epochs3, warmup_epochs4=config.warmup_epochs4,
- warmup_epochs5=config.warmup_epochs5, total_epochs=args_opt.epoch_size,
- steps_per_epoch=dataset_size))
- opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
- config.momentum, config.weight_decay, loss_scale)
- net = TrainingWrapper(net, opt, loss_scale)
- model = Model(net)
- print("Start train retinanet, the first epoch will be slower because of the graph compilation.")
- cb = [TimeMonitor(), LossMonitor()]
- cb += [Monitor(lr_init=lr.asnumpy())]
- config_ck = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs,
- keep_checkpoint_max=config.keep_checkpoint_max)
- ckpt_cb = ModelCheckpoint(prefix="retinanet", directory=config.save_checkpoint_path, config=config_ck)
- if args_opt.distribute:
- if rank == 0:
- cb += [ckpt_cb]
- model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
- else:
- cb += [ckpt_cb]
- model.train(args_opt.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)
-
- if __name__ == '__main__':
- main()
|