|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Evaluation for retinanet"""
-
- import os
- import argparse
- import time
- import numpy as np
- from mindspore import context, Tensor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
- from src.retinanet import retinanet50, resnet50, retinanetInferWithDecoder
- from src.dataset import create_retinanet_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord
- from src.config import config
- from src.coco_eval import metrics
- from src.box_utils import default_boxes
-
- def retinanet_eval(dataset_path, ckpt_path):
- """retinanet evaluation."""
- batch_size = 1
- ds = create_retinanet_dataset(dataset_path, batch_size=batch_size, repeat_num=1, is_training=False)
- backbone = resnet50(config.num_classes)
- net = retinanet50(backbone, config)
- net = retinanetInferWithDecoder(net, Tensor(default_boxes), config)
- print("Load Checkpoint!")
- param_dict = load_checkpoint(ckpt_path)
- net.init_parameters_data()
- load_param_into_net(net, param_dict)
-
- net.set_train(False)
- i = batch_size
- total = ds.get_dataset_size() * batch_size
- start = time.time()
- pred_data = []
- print("\n========================================\n")
- print("total images num: ", total)
- print("Processing, please wait a moment.")
- for data in ds.create_dict_iterator(output_numpy=True):
- img_id = data['img_id']
- img_np = data['image']
- image_shape = data['image_shape']
-
- output = net(Tensor(img_np))
- for batch_idx in range(img_np.shape[0]):
- pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
- "box_scores": output[1].asnumpy()[batch_idx],
- "img_id": int(np.squeeze(img_id[batch_idx])),
- "image_shape": image_shape[batch_idx]})
- percent = round(i / total * 100., 2)
-
- print(f' {str(percent)} [{i}/{total}]', end='\r')
- i += batch_size
- cost_time = int((time.time() - start) * 1000)
- print(f' 100% [{total}/{total}] cost {cost_time} ms')
- mAP = metrics(pred_data)
- print("\n========================================\n")
- print(f"mAP: {mAP}")
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description='retinanet evaluation')
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
- parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
- help="run platform, only support Ascend.")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
-
- prefix = "retinanet_eval.mindrecord"
- mindrecord_dir = config.mindrecord_dir
- mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
- if args_opt.dataset == "voc":
- config.coco_root = config.voc_root
- if not os.path.exists(mindrecord_file):
- if not os.path.isdir(mindrecord_dir):
- os.makedirs(mindrecord_dir)
- if args_opt.dataset == "coco":
- if os.path.isdir(config.coco_root):
- print("Create Mindrecord.")
- data_to_mindrecord_byte_image("coco", False, prefix)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
- else:
- print("coco_root not exits.")
- elif args_opt.dataset == "voc":
- if os.path.isdir(config.voc_dir) and os.path.isdir(config.voc_root):
- print("Create Mindrecord.")
- voc_data_to_mindrecord(mindrecord_dir, False, prefix)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
- else:
- print("voc_root or voc_dir not exits.")
- else:
- if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
- print("Create Mindrecord.")
- data_to_mindrecord_byte_image("other", False, prefix)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
- else:
- print("IMAGE_DIR or ANNO_PATH not exits.")
-
- print("Start Eval!")
- retinanet_eval(mindrecord_file, config.checkpoint_path)
|