|
- # Copyright 2020 Huawei Technologies Co., Ltd
-
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
-
- # http://www.apache.org/licenses/LICENSE-2.0
-
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import os
- import argparse
-
- import mindspore
- from mindspore import context
- from mindspore.context import ParallelMode
- from mindspore.communication.management import init, get_rank, get_group_size
- from mindspore.train import Model
- from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
- from mindspore.nn.optim import Adam, Momentum
- from mindspore.train.loss_scale_manager import FixedLossScaleManager
-
- from src.dataset import create_dataset
- from src.openposenet import OpenPoseNet
- from src.loss import openpose_loss, BuildTrainNetwork, TrainOneStepWithClipGradientCell
- from src.config import params
- from src.utils import get_lr, load_model, MyLossMonitor
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
-
- parser = argparse.ArgumentParser('mindspore openpose training')
- parser.add_argument('--train_dir', type=str, default='train2017', help='train data dir')
- parser.add_argument('--train_ann', type=str, default='person_keypoints_train2017.json',
- help='train annotations json')
- parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
- args, _ = parser.parse_known_args()
- args.jsonpath_train = os.path.join(params['data_dir'], 'annotations/' + args.train_ann)
- args.imgpath_train = os.path.join(params['data_dir'], args.train_dir)
- args.maskpath_train = os.path.join(params['data_dir'], 'ignore_mask_train')
-
-
- def train():
- """Train function."""
-
- args.outputs_dir = params['save_model_path']
-
- if args.group_size > 1:
- init()
- context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
- gradients_mean=True)
- args.outputs_dir = os.path.join(args.outputs_dir, "ckpt_{}/".format(str(get_rank())))
- args.rank = get_rank()
- else:
- args.outputs_dir = os.path.join(args.outputs_dir, "ckpt_0/")
- args.rank = 0
-
- if args.group_size > 1:
- args.max_epoch = params["max_epoch_train_NP"]
- args.loss_scale = params['loss_scale'] / 2
- args.lr_steps = list(map(int, params["lr_steps_NP"].split(',')))
- params['train_type'] = params['train_type_NP']
- params['optimizer'] = params['optimizer_NP']
- params['group_params'] = params['group_params_NP']
- else:
- args.max_epoch = params["max_epoch_train"]
- args.loss_scale = params['loss_scale']
- args.lr_steps = list(map(int, params["lr_steps"].split(',')))
-
- # create network
- print('start create network')
- criterion = openpose_loss()
- criterion.add_flags_recursive(fp32=True)
- network = OpenPoseNet(vggpath=params['vgg_path'], vgg_with_bn=params['vgg_with_bn'])
- if params["load_pretrain"]:
- print("load pretrain model:", params["pretrained_model_path"])
- load_model(network, params["pretrained_model_path"])
- train_net = BuildTrainNetwork(network, criterion)
-
- # create dataset
- if os.path.exists(args.jsonpath_train) and os.path.exists(args.imgpath_train) \
- and os.path.exists(args.maskpath_train):
- print('start create dataset')
- else:
- print('Error: wrong data path')
- return 0
-
- num_worker = 20 if args.group_size > 1 else 48
- de_dataset_train = create_dataset(args.jsonpath_train, args.imgpath_train, args.maskpath_train,
- batch_size=params['batch_size'],
- rank=args.rank,
- group_size=args.group_size,
- num_worker=num_worker,
- multiprocessing=True,
- shuffle=True,
- repeat_num=1)
- steps_per_epoch = de_dataset_train.get_dataset_size()
- print("steps_per_epoch: ", steps_per_epoch)
-
- # lr scheduler
- lr_stage, lr_base, lr_vgg = get_lr(params['lr'] * args.group_size,
- params['lr_gamma'],
- steps_per_epoch,
- args.max_epoch,
- args.lr_steps,
- args.group_size,
- lr_type=params['lr_type'],
- warmup_epoch=params['warmup_epoch'])
-
- # optimizer
- if params['group_params']:
- vgg19_base_params = list(filter(lambda x: 'base.vgg_base' in x.name, train_net.trainable_params()))
- base_params = list(filter(lambda x: 'base.conv' in x.name, train_net.trainable_params()))
- stages_params = list(filter(lambda x: 'base' not in x.name, train_net.trainable_params()))
-
- group_params = [{'params': vgg19_base_params, 'lr': lr_vgg},
- {'params': base_params, 'lr': lr_base},
- {'params': stages_params, 'lr': lr_stage}]
-
- if params['optimizer'] == "Momentum":
- opt = Momentum(group_params, learning_rate=lr_stage, momentum=0.9)
- elif params['optimizer'] == "Adam":
- opt = Adam(group_params)
- else:
- raise ValueError("optimizer not support.")
- else:
- if params['optimizer'] == "Momentum":
- opt = Momentum(train_net.trainable_params(), learning_rate=lr_stage, momentum=0.9)
- elif params['optimizer'] == "Adam":
- opt = Adam(train_net.trainable_params(), learning_rate=lr_stage)
- else:
- raise ValueError("optimizer not support.")
-
- # callback
- config_ck = CheckpointConfig(save_checkpoint_steps=params['ckpt_interval'],
- keep_checkpoint_max=params["keep_checkpoint_max"])
- ckpoint_cb = ModelCheckpoint(prefix='{}'.format(args.rank), directory=args.outputs_dir, config=config_ck)
- time_cb = TimeMonitor(data_size=de_dataset_train.get_dataset_size())
- if args.rank == 0:
- callback_list = [MyLossMonitor(), time_cb, ckpoint_cb]
- else:
- callback_list = [MyLossMonitor(), time_cb]
-
- # train
- if params['train_type'] == 'clip_grad':
- train_net = TrainOneStepWithClipGradientCell(train_net, opt, sens=args.loss_scale)
- train_net.set_train()
- model = Model(train_net)
- elif params['train_type'] == 'fix_loss_scale':
- loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
- train_net.set_train()
- model = Model(train_net, optimizer=opt, loss_scale_manager=loss_scale_manager)
- else:
- raise ValueError("Type {} is not support.".format(params['train_type']))
-
- print("============== Starting Training ==============")
- model.train(args.max_epoch, de_dataset_train, callbacks=callback_list,
- dataset_sink_mode=False)
- return 0
-
- if __name__ == "__main__":
- mindspore.common.seed.set_seed(1)
- train()
|