|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """Evaluation for Deeptext"""
- import argparse
- import os
- import time
-
- import numpy as np
- from src.Deeptext.deeptext_vgg16 import Deeptext_VGG16
- from src.config import config
- from src.dataset import data_to_mindrecord_byte_image, create_deeptext_dataset
- from src.utils import metrics
-
- from mindspore import context
- from mindspore.common import set_seed
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- set_seed(1)
-
- parser = argparse.ArgumentParser(description="Deeptext evaluation")
- parser.add_argument("--checkpoint_path", type=str, default='test', help="Checkpoint file path.")
- parser.add_argument("--imgs_path", type=str, required=True,
- help="Test images files paths, multiple paths can be separated by ','.")
- parser.add_argument("--annos_path", type=str, required=True,
- help="Annotations files paths of test images, multiple paths can be separated by ','.")
- parser.add_argument("--device_id", type=int, default=7, help="Device id, default is 7.")
- parser.add_argument("--mindrecord_prefix", type=str, default='Deeptext-TEST', help="Prefix of mindrecord.")
- args_opt = parser.parse_args()
-
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
-
-
- def deeptext_eval_test(dataset_path='', ckpt_path=''):
- """Deeptext evaluation."""
- ds = create_deeptext_dataset(dataset_path, batch_size=config.test_batch_size,
- repeat_num=1, is_training=False)
-
- total = ds.get_dataset_size()
- net = Deeptext_VGG16(config)
- param_dict = load_checkpoint(ckpt_path)
- load_param_into_net(net, param_dict)
- net.set_train(False)
- eval_iter = 0
-
- print("\n========================================\n")
- print("Processing, please wait a moment.")
- max_num = 32
-
- pred_data = []
- for data in ds.create_dict_iterator():
- eval_iter = eval_iter + 1
-
- img_data = data['image']
- img_metas = data['image_shape']
- gt_bboxes = data['box']
- gt_labels = data['label']
- gt_num = data['valid_num']
-
- start = time.time()
- # run net
- output = net(img_data, img_metas, gt_bboxes, gt_labels, gt_num)
- gt_bboxes = gt_bboxes.asnumpy()
-
- gt_bboxes = gt_bboxes[gt_num.asnumpy().astype(bool), :]
- print(gt_bboxes)
- gt_labels = gt_labels.asnumpy()
- gt_labels = gt_labels[gt_num.asnumpy().astype(bool)]
- print(gt_labels)
- end = time.time()
- print("Iter {} cost time {}".format(eval_iter, end - start))
-
- # output
- all_bbox = output[0]
- all_label = output[1] + 1
- all_mask = output[2]
-
- for j in range(config.test_batch_size):
- all_bbox_squee = np.squeeze(all_bbox.asnumpy()[j, :, :])
- all_label_squee = np.squeeze(all_label.asnumpy()[j, :, :])
- all_mask_squee = np.squeeze(all_mask.asnumpy()[j, :, :])
-
- all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :]
- all_labels_tmp_mask = all_label_squee[all_mask_squee]
-
- if all_bboxes_tmp_mask.shape[0] > max_num:
- inds = np.argsort(-all_bboxes_tmp_mask[:, -1])
- inds = inds[:max_num]
- all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds]
- all_labels_tmp_mask = all_labels_tmp_mask[inds]
-
- pred_data.append({"boxes": all_bboxes_tmp_mask,
- "labels": all_labels_tmp_mask,
- "gt_bboxes": gt_bboxes,
- "gt_labels": gt_labels})
-
- percent = round(eval_iter / total * 100, 2)
-
- print(' %s [%d/%d]' % (str(percent) + '%', eval_iter, total), end='\r')
-
- precisions, recalls = metrics(pred_data)
- print("\n========================================\n")
- for i in range(config.num_classes - 1):
- j = i + 1
- f1 = (2 * precisions[j] * recalls[j]) / (precisions[j] + recalls[j] + 1e-6)
- print("class {} precision is {:.2f}%, recall is {:.2f}%,"
- "F1 is {:.2f}%".format(j, precisions[j] * 100, recalls[j] * 100, f1 * 100))
- if config.use_ambigous_sample:
- break
-
-
- if __name__ == '__main__':
- prefix = args_opt.mindrecord_prefix
- config.test_images = args_opt.imgs_path
- config.test_txts = args_opt.annos_path
- mindrecord_dir = config.mindrecord_dir
- mindrecord_file = os.path.join(mindrecord_dir, prefix)
- print("CHECKING MINDRECORD FILES ...")
- if not os.path.exists(mindrecord_file):
- if not os.path.isdir(mindrecord_dir):
- os.makedirs(mindrecord_dir)
- print("Create Mindrecord. It may take some time.")
- data_to_mindrecord_byte_image(False, prefix, file_num=1)
- print("Create Mindrecord Done, at {}".format(mindrecord_dir))
-
- print("CHECKING MINDRECORD FILES DONE!")
- print("Start Eval!")
- deeptext_eval_test(mindrecord_file, args_opt.checkpoint_path)
|