|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """basic"""
- import numpy as np
- import mindspore.common.dtype as mstype
- from mindspore.common.tensor import Tensor
- from mindspore.common.initializer import initializer
- from mindspore._checkparam import check_int_positive, check_bool
- from mindspore.ops import operations as P
- from mindspore.ops import functional as F
- from mindspore.ops.functional import identity
- from mindspore.common.parameter import Parameter
- from mindspore._extends import cell_attr_register
- from ..cell import Cell
- from .activation import get_activation
- from ..._checkparam import ParamValidator as validator
-
-
- class Dropout(Cell):
- r"""
- Dropout layer for the input.
-
- Randomly set some elements of the input tensor to zero with probability :math:`1 - keep\_prob` during training
- using samples from a Bernoulli distribution.
-
- Note:
- Each channel will be zeroed out independently on every construct call.
-
- The outputs are scaled by a factor of :math:`\frac{1}{keep\_prob}` during training so
- that the output layer remains at a similar scale. During inference, this
- layer returns the same tensor as the input.
-
- This technique is proposed in paper `Dropout: A Simple Way to Prevent Neural Networks from Overfitting
- <http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf>`_ and proved to be effective to reduce
- over-fitting and prevents neurons from co-adaptation. See more details in `Improving neural networks by
- preventing co-adaptation of feature detectors
- <https://arxiv.org/pdf/1207.0580.pdf>`_.
-
- Args:
- keep_prob (float): The keep rate, greater than 0 and less equal than 1. E.g. rate=0.9,
- dropping out 10% of input units. Default: 0.5.
- seed0 (int): The first random seed. Default: 0.
- seed1 (int): The second random seed. Default: 0.
- dtype (:class:`mindspore.dtype`): Data type of input. Default: mindspore.float32.
-
- Raises:
- ValueError: If keep_prob is not in range (0, 1).
-
- Inputs:
- - **input** (Tensor) - An N-D Tensor.
-
- Outputs:
- Tensor, output tensor with the same shape as the input.
-
- Examples:
- >>> x = Tensor(np.ones([20, 16, 50]), mindspore.float32)
- >>> net = nn.Dropout(keep_prob=0.8)
- >>> net(x)
- """
- def __init__(self, keep_prob=0.5, seed0=0, seed1=0, dtype=mstype.float32):
- super(Dropout, self).__init__()
- if keep_prob <= 0 or keep_prob > 1:
- raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob))
- validator.check_subclass("dtype", dtype, mstype.number_type)
- self.keep_prob = Tensor(keep_prob)
- self.seed0 = seed0
- self.seed1 = seed1
- self.dtype = dtype
- self.get_shape = P.Shape()
- self.dropout_gen_mask = P.DropoutGenMask(Seed0=seed0, Seed1=seed1)
- self.dropout_do_mask = P.DropoutDoMask()
- self.cast = P.Cast()
-
- def construct(self, x):
- shape = self.get_shape(x)
- dtype = P.DType()(x)
- keep_prob = self.cast(self.keep_prob, dtype)
- output = self.dropout_gen_mask(shape, keep_prob)
- return self.dropout_do_mask(x, output, keep_prob)
-
- def extend_repr(self):
- str_info = 'keep_prob={}, Seed0={}, Seed1={}, dtype={}' \
- .format(self.keep_prob, self.seed0, self.seed1, self.dtype)
- return str_info
-
-
- class Flatten(Cell):
- r"""
- Flatten layer for the input.
-
- Flattens a tensor without changing dimension of batch size on the 0-th axis.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape :math:`(N, \ldots)` to be flattened.
-
- Outputs:
- Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is
- the product of the remaining dimensions.
-
- Examples:
- >>> net = nn.Flatten()
- >>> input = Tensor(np.array([[[1.2, 1.2], [2.1, 2.1]], [[2.2, 2.2], [3.2, 3.2]]]), mindspore.float32)
- >>> input.shape()
- (2, 2, 2)
- >>> net(input)
- [[1.2 1.2 2.1 2.1]
- [2.2 2.2 3.2 3.2]]
- """
- def __init__(self):
- super(Flatten, self).__init__()
-
- def construct(self, x):
- return F.reshape(x, (F.shape(x)[0], -1))
-
-
- class Dense(Cell):
- r"""
- The fully connected layer.
-
- Applies dense-connected layer for the input. This layer implements the operation as:
-
- .. math::
- \text{outputs} = \text{activation}(\text{inputs} * \text{kernel} + \text{bias}),
-
- where :math:`\text{activation}` is the activation function passed as the activation
- argument (if passed in), :math:`\text{activation}` is a weight matrix with the same
- data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
- with the same data type as the inputs created by the layer (only if has_bias is True).
-
- Args:
- in_channels (int): The number of channels in the input space.
- out_channels (int): The number of channels in the output space.
- weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
- is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
- bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
- same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
- has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
- activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
-
- Raises:
- ValueError: If weight_init or bias_init shape is incorrect.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
-
- Outputs:
- Tensor of shape :math:`(N, out\_channels)`.
-
- Examples:
- >>> net = nn.Dense(3, 4)
- >>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
- >>> net(input)
- [[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
- [ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
- """
- @cell_attr_register(attrs=['has_bias', 'activation'])
- def __init__(self,
- in_channels,
- out_channels,
- weight_init='normal',
- bias_init='zeros',
- has_bias=True,
- activation=None):
- super(Dense, self).__init__()
- self.in_channels = check_int_positive(in_channels)
- self.out_channels = check_int_positive(out_channels)
- self.has_bias = check_bool(has_bias)
-
- if isinstance(weight_init, Tensor):
- if weight_init.dim() != 2 or weight_init.shape()[0] != out_channels or \
- weight_init.shape()[1] != in_channels:
- raise ValueError("weight_init shape error")
-
- self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
-
- if self.has_bias:
- if isinstance(bias_init, Tensor):
- if bias_init.dim() != 1 or bias_init.shape()[0] != out_channels:
- raise ValueError("bias_init shape error")
-
- self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
-
- self.matmul = P.MatMul(transpose_b=True)
- self.bias_add = P.BiasAdd()
-
- self.activation = get_activation(activation)
- self.activation_flag = self.activation is not None
-
- def construct(self, x):
- output = self.matmul(x, self.weight)
- if self.has_bias:
- output = self.bias_add(output, self.bias)
- if self.activation_flag:
- return self.activation(output)
- return output
-
- def extend_repr(self):
- str_info = 'in_channels={}, out_channels={}, weight={}, has_bias={}' \
- .format(self.in_channels, self.out_channels, self.weight, self.has_bias)
- if self.has_bias:
- str_info = str_info + ', bias={}'.format(self.bias)
-
- if self.activation_flag:
- str_info = str_info + ', activation={}'.format(self.activation)
-
- return str_info
-
-
- class ClipByNorm(Cell):
- r"""
- Clips tensor values to a maximum :math:`L_2`-norm.
-
- The output of this layer remains the same if the :math:`L_2`-norm of the input tensor
- is not greater than the argument clip_norm. Otherwise the tensor will be normalized as:
-
- .. math::
- \text{output}(X) = \frac{\text{clip_norm} * X}{L_2(X)},
-
- where :math:`L_2(X)` is the :math:`L_2`-norm of :math:`X`.
-
- Inputs:
- - **input** (Tensor) - Tensor of shape N-D.
- - **clip_norm** (Tensor) - A scalar Tensor of shape :math:`()` or :math:`(1)` and of
- the same type as the input Tensor.
-
- Outputs:
- Tensor, clipped tensor with the same shape as the input.
-
- Examples:
- >>> net = nn.ClipByNorm()
- >>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
- >>> clip_norm = Tensor(np.array([100]).astype(np.float32))
- >>> net(input, clip_norm)
-
- """
- def __init__(self):
- super(ClipByNorm, self).__init__()
- self.reduce_sum = P.ReduceSum(keep_dims=True)
- self.select_ = P.Select()
- self.greater_ = P.Greater()
- self.axis = ()
- self.cast = P.Cast()
- self.zero = Tensor(np.array([0.0]).astype(np.float32))
- self.sqrt = P.Sqrt()
- self.max_op = P.Maximum()
- self.shape = P.Shape()
- self.reshape = P.Reshape()
- self.fill = P.Fill()
- self.expand_dims = P.ExpandDims()
- self.dtype = P.DType()
-
- def construct(self, x, clip_norm):
- mul_x = F.square(x)
- l2sum = self.cast(self.reduce_sum(mul_x, self.axis), mstype.float32)
- cond = self.greater_(l2sum, self.zero)
- ones_ = self.fill(self.dtype(cond), self.shape(cond), 1.0)
-
- l2sum_safe = self.select_(cond, l2sum, self.cast(ones_, self.dtype(l2sum)))
- l2norm = self.select_(cond, self.sqrt(l2sum_safe), l2sum)
-
- intermediate = x * clip_norm
- max_norm = self.max_op(l2norm, clip_norm)
- values_clip = self.cast(intermediate, mstype.float32) / self.expand_dims(max_norm, -1)
- values_clip = self.reshape(values_clip, self.shape(x))
- values_clip = identity(values_clip)
- return values_clip
-
-
- class Norm(Cell):
- """
- Computes the norm of vectors, currently including Euclidean norm, i.e., :math:`L_2`-norm.
-
- Args:
- axis (tuple): The axis over which to compute vector norms. Default: ().
- keep_dims (bool): If True, the axis indicated in `axis` are kept with size 1. Otherwise,
- the dimensions in `axis` are removed from the output shape. Default: False.
-
- Inputs:
- - **input** (Tensor) - Tensor which is not empty.
-
- Outputs:
- Tensor, output tensor with dimensions in 'axis' reduced to 1 will be returned if 'keep_dims' is True;
- otherwise a Tensor with dimensions in 'axis' removed is returned.
-
- Examples:
- >>> net = nn.Norm(axis=0)
- >>> input = Tensor(np.random.randint(0, 10, [4, 16]), mindspore.float32)
- >>> net(input)
- """
- def __init__(self, axis=(), keep_dims=False):
- super(Norm, self).__init__()
- self.axis = axis
- self.keep_dims = keep_dims
- self.reduce_sum = P.ReduceSum(True)
- self.sqrt = P.Sqrt()
- self.squeeze = P.Squeeze(self.axis)
-
- def construct(self, x):
- x = self.sqrt(self.reduce_sum(F.square(x), self.axis))
-
- if not self.keep_dims:
- x = self.squeeze(x)
- return x
-
- def extend_repr(self):
- str_info = 'axis={}, keep_dims={}'.format(self.axis, self.keep_dims)
- return str_info
-
-
- class OneHot(Cell):
- """
- Returns a one-hot tensor.
-
- The locations represented by indices in argument 'indices' take value on_value,
- while all other locations take value off_value.
-
- Note:
- If the input indices is rank :math:`N`, the output will have rank :math:`N+1`. The new
- axis is created at dimension `axis`.
-
- Args:
- axis (int): Features x depth if axis == -1, depth x features
- if axis == 0. Default: -1.
- depth (int): A scalar defining the depth of the one hot dimension. Default: 1.
- on_value (float): A scalar defining the value to fill in output[i][j]
- when indices[j] = i. Default: 1.0.
- off_value (float): A scalar defining the value to fill in output[i][j]
- when indices[j] != i. Default: 0.0.
- dtype (:class:`mindspore.dtype`): Data type of 'on_value' and 'off_value', not the
- data type of indices. Default: mindspore.float32.
-
- Inputs:
- - **indices** (Tensor) - A tensor of indices of data type mindspore.int32 and arbitrary shape.
-
- Outputs:
- Tensor, the one-hot tensor of data type 'dtype' with dimension at 'axis' expanded to 'depth' and filled with
- on_value and off_value.
-
- Examples:
- >>> net = nn.OneHot(depth=4, axis=1)
- >>> indices = Tensor([[1, 3], [0, 2]], dtype=mindspore.int32)
- >>> net(indices)
- [[[0. 0.]
- [1. 0.]
- [0. 0.]
- [0. 1.]]
- [[1. 0.]
- [0. 0.]
- [0. 1.]
- [0. 0.]]]
- """
- def __init__(self, axis=-1, depth=1, on_value=1.0, off_value=0.0, dtype=mstype.float32):
- super(OneHot, self).__init__()
- self.onehot = P.OneHot(axis)
- self.depth = depth
- self.on_value = Tensor(on_value, dtype)
- self.off_value = Tensor(off_value, dtype)
-
- def construct(self, indices):
- return self.onehot(indices, self.depth, self.on_value, self.off_value)
-
-
- class ImageGradients(Cell):
- r"""
- Returns two tensors, the first is along the height dimension and the second is along the width dimension.
-
- Assume an image shape is :math:`h*w`. The gradients along the height and the width are :math:`dy` and :math:`dx`,
- respectively.
-
- .. math::
- dy[i] = \begin{cases} image[i+1, :]-image[i, :], &if\ 0<=i<h-1 \cr
- 0, &if\ i==h-1\end{cases}
-
- dx[i] = \begin{cases} image[:, i+1]-image[:, i], &if\ 0<=i<w-1 \cr
- 0, &if\ i==w-1\end{cases}
-
- Inputs:
- - **images** (Tensor) - The input image data, with format 'NCHW'.
-
- Outputs:
- - **dy** (Tensor) - vertical image gradients, the same type and shape as input.
- - **dx** (Tensor) - horizontal image gradients, the same type and shape as input.
-
- Examples:
- >>> net = nn.ImageGradients()
- >>> image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32)
- >>> net(image)
- [[[[2,2]
- [0,0]]]]
- [[[[1,0]
- [1,0]]]]
- """
- def __init__(self):
- super(ImageGradients, self).__init__()
-
- def construct(self, images):
- batch_size, depth, height, width = P.Shape()(images)
- dy = images[:, :, 1:, :] - images[:, :, :height - 1, :]
- dy_last = P.Fill()(P.DType()(images), (batch_size, depth, 1, width), 0)
- dy = P.Concat(2)((dy, dy_last))
-
- dx = images[:, :, :, 1:] - images[:, :, :, :width - 1]
- dx_last = P.Fill()(P.DType()(images), (batch_size, depth, height, 1), 0)
- dx = P.Concat(3)((dx, dx_last))
- return dy, dx
-
-
- class Pad(Cell):
- """
- Pads the input tensor according to the paddings and mode.
-
- Args:
- paddings (tuple): The shape of parameter `paddings` is (N, 2). N is the rank of input data. All elements of
- paddings are int type. For `D` th dimension of input, paddings[D, 0] indicates how many sizes to be
- extended ahead of the `D` th dimension of the input tensor, and paddings[D, 1] indicates how many sizes to
- be extended behind of the `D` th dimension of the input tensor.
- mode (string): Specifies padding mode. The optional values are "CONSTANT", "REFLECT", "SYMMETRIC".
- Default: "CONSTANT".
-
- Inputs:
- - ** input_x** (Tensor) - The input tensor.
-
- Outputs:
- Tensor, the tensor after padding.
-
- - If `mode` is "CONSTANT", it fill the edge with 0, regardless of the values of the `input_x`.
- If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
- Outputs is [[0,0,0,0,0,0,0],[0,0,1,2,3,0,0],[0,0,4,5,6,0,0],[0,0,7,8,9,0,0],[0,0,0,0,0,0,0]].
- - If 'mode` is "REFLECT", it uses a way of symmetrical copying throught the axis of symmetry to fill in,
- symmetry. If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
- Outputs is [[6,5,4,5,6,5,4],[3,2,1,2,3,2,1],[6,5,4,5,6,5,4],[9,8,7,8,9,8,7],[6,5,4,5,6,5,4]].
- - If 'mode' is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
- according to the symmetry axis, except that it includes the symmetry axis. If the `input_x`
- is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is
- [[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]].
-
- Examples:
- >>> from mindspore import Tensor
- >>> from mindspore.ops import operations as P
- >>> import mindspore.nn as nn
- >>> import numpy as np
- >>> class Net(nn.Cell):
- >>> def __init__(self):
- >>> super(Net, self).__init__()
- >>> self.pad = nn.Pad(paddings=((1,1),(2,2)), mode="CONSTANT")
- >>> def construct(self, x):
- >>> return self.pad(x)
- >>> x = np.random.random(size=(2, 3)).astype(np.float32)
- >>> pad = Net()
- >>> ms_output = pad(Tensor(x))
- """
-
- def __init__(self, paddings, mode="CONSTANT"):
- super(Pad, self).__init__()
- self.mode = mode
- self.paddings = paddings
- validator.check_string('mode', self.mode, ["CONSTANT", "REFLECT", "SYMMETRIC"])
- if not isinstance(paddings, tuple):
- raise TypeError('Paddings must be tuple type.')
- for item in paddings:
- if len(item) != 2:
- raise ValueError('The shape of paddings must be (n, 2).')
- if mode == "CONSTANT":
- self.pad = P.Pad(self.paddings)
- else:
- self.paddings = Tensor(np.array(self.paddings))
- self.pad = P.MirrorPad(mode=mode)
-
- def construct(self, x):
- if self.mode == "CONSTANT":
- x = self.pad(x)
- else:
- x = self.pad(x, self.paddings)
- return x
|