|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test VAE interface """
- import numpy as np
-
- import mindspore.common.dtype as mstype
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.api import _executor
- from mindspore.nn.probability.dpn import VAE
-
-
- class Encoder(nn.Cell):
- def __init__(self):
- super(Encoder, self).__init__()
- self.fc1 = nn.Dense(6, 3)
- self.relu = nn.ReLU()
-
- def construct(self, x):
- x = self.fc1(x)
- x = self.relu(x)
- return x
-
-
- class Decoder(nn.Cell):
- def __init__(self):
- super(Decoder, self).__init__()
- self.fc1 = nn.Dense(3, 6)
- self.sigmoid = nn.Sigmoid()
-
- def construct(self, z):
- z = self.fc1(z)
- z = self.sigmoid(z)
- return z
-
-
- def test_vae():
- """
- Test the vae interface with the DNN model.
- """
- encoder = Encoder()
- decoder = Decoder()
- net = VAE(encoder, decoder, hidden_size=3, latent_size=2)
- input_data = Tensor(np.random.rand(32, 6), dtype=mstype.float32)
- _executor.compile(net, input_data)
|