|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
-
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import context
- import mindspore.common.dtype as mstype
- from mindspore.common.seed import _get_graph_seed
- from mindspore.common.api import _executor
- from mindspore._checkparam import Validator
- from mindspore.ops.primitive import constexpr
- from mindspore.ops import composite as C
- from mindspore.ops import operations as P
- from tests.ut.python.ops.test_math_ops import VirtualLoss
-
-
- grad_all = C.GradOperation(get_all=True)
-
-
- class NetWithLoss(nn.Cell):
- def __init__(self, network):
- super(NetWithLoss, self).__init__()
- self.loss = VirtualLoss()
- self.network = network
-
- def construct(self, x, y, b):
- predict = self.network(x, y, b)
- return self.loss(predict)
-
-
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
-
- def construct(self, x, y, b):
- return grad_all(self.network)(x, y, b)
-
-
- @constexpr
- def _is_float_dtype(dtype):
- if dtype in [mstype.float32, mstype.float16]:
- return True
- return False
-
- class Dropout(nn.Cell):
- def __init__(self, keep_prob=0.5, dtype=mstype.float32):
- super(Dropout, self).__init__()
- if keep_prob <= 0 or keep_prob > 1:
- raise ValueError("dropout probability should be a number in range (0, 1], but got {}".format(keep_prob))
- Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
- Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name)
- self.keep_prob = keep_prob
- seed0, seed1 = _get_graph_seed(0, "dropout")
- self.seed0 = seed0
- self.seed1 = seed1
- self.dtype = dtype
- self.get_shape = P.Shape()
- self.dropout_gen_mask = P.DropoutGenMask(Seed0=self.seed0, Seed1=self.seed1)
- self.dropout_do_mask = P.DropoutDoMask()
- self.cast = P.Cast()
- self.is_gpu = context.get_context('device_target') in ["GPU"]
- self.dropout = P.Dropout(keep_prob)
-
- def construct(self, x):
- if not self.training:
- return x
-
- if self.is_gpu:
- out, _ = self.dropout(x)
- return out
-
- if self.keep_prob == 1:
- return x
-
- shape = self.get_shape(x)
- dtype = P.DType()(x)
- if _is_float_dtype(dtype):
- keep_prob = self.cast(self.keep_prob, dtype)
- else:
- keep_prob = self.cast(self.keep_prob, mstype.float16)
- output = self.dropout_gen_mask(shape, keep_prob)
- return self.dropout_do_mask(x, output, keep_prob)
-
- def extend_repr(self):
- return 'keep_prob={}, dtype={}'.format(self.keep_prob, self.dtype)
-
- # model_parallel test
- def test_two_matmul_dropout():
- class Net(nn.Cell):
- def __init__(self, strategy1, strategy2, strategy3):
- super().__init__()
- self.matmul1 = P.MatMul().shard(strategy1)
- self.dropout = Dropout()
- self.dropout.dropout_do_mask.shard(strategy2)
- self.dropout.dropout_gen_mask.shard(strategy2)
- self.matmul2 = P.MatMul().shard(strategy3)
-
- def construct(self, x, y, b):
- out = self.matmul1(x, y)
- out = self.dropout(out)
- out = self.matmul2(out, b)
- return out
-
- context.set_auto_parallel_context(device_num=8, global_rank=0)
- strategy1 = ((4, 2), (2, 1))
- strategy2 = ((8, 1),)
- strategy3 = ((1, 8), (8, 1))
- net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3)))
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
- net.set_auto_parallel()
-
- x = Tensor(np.ones([128, 32]), dtype=ms.float32)
- y = Tensor(np.ones([32, 64]), dtype=ms.float32)
- b = Tensor(np.ones([64, 64]), dtype=ms.float32)
- net.set_train()
- _executor.compile(net, x, y, b)
|