|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
- import mindspore as ms
- from mindspore import context, Tensor, Parameter
- from mindspore.common.api import _executor
- from mindspore.nn import Cell, TrainOneStepCell, Momentum
- from mindspore.ops import operations as P
- from mindspore.common.initializer import initializer
-
- class Net(Cell):
- def __init__(self,
- strategy1=None,
- strategy2=None,
- strategy3=None,
- axis=0,
- init_flag=True,
- split_tuple=(4, 4),
- split_string="manual_split",
- param_shape=(8, 8)):
- super().__init__()
- self.gatherv2 = P.GatherV2().shard(strategy1)
- self.gatherv2.add_prim_attr(split_string, split_tuple)
- self.mul = P.Mul().shard(strategy2)
- self.reshape = P.Reshape()
- self.matmul = P.MatMul().shard(strategy3)
- self.matmul.add_prim_attr("forward_reduce_scatter", True)
- if init_flag:
- self.param = Parameter(initializer("ones", param_shape, ms.float32), name="gatherv2_param")
- else:
- self.param = Parameter(Tensor(np.ones(param_shape), dtype=ms.float32), name="gatherv2_param")
- self.mul_weight = Parameter(initializer("ones", (8, 8, 8), ms.float32), name="mul_weight")
- self.matmul_weight = Parameter(initializer("ones", (64, 16), ms.float32), name="matmul_weight")
- self.axis = axis
-
- def construct(self, x, b):
- out = self.gatherv2(self.param, x, self.axis)
- out = self.mul(out, self.mul_weight)
- out = self.reshape(out, (8, 64))
- out = self.matmul(out, self.matmul_weight)
- return out
-
-
- _x = Tensor(np.ones([8, 8]), dtype=ms.int32)
- _b = Tensor(np.ones([64, 8]), dtype=ms.float32)
-
-
- def compile_net(net):
- context.set_context(save_graphs=True)
- optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_net = TrainOneStepCell(net, optimizer)
- train_net.set_auto_parallel()
- train_net.set_train()
- _executor.compile(train_net, _x, _b, auto_parallel_mode=True)
- context.reset_auto_parallel_context()
-
-
- def test_normal_split():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=2, global_rank=0)
- strategy1 = ((2, 1), (1, 2))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3)
- compile_net(net)
-
-
- def test_normal_split2():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=4, global_rank=0)
- strategy1 = ((4, 1), (1, 4))
- strategy2 = ((1, 4, 1), (1, 4, 1))
- strategy3 = ((1, 4), (4, 1))
- net = Net(strategy1, strategy2, strategy3, split_tuple=(10, 20, 30, 4), param_shape=(64, 8))
- compile_net(net)
-
-
- def test_normal_split3():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=32, global_rank=17)
- strategy1 = ((4, 8), (1, 4))
- strategy2 = ((1, 4, 8), (1, 4, 8))
- strategy3 = ((1, 32), (32, 1))
- net = Net(strategy1, strategy2, strategy3, split_tuple=(10, 20, 30, 4), param_shape=(64, 8))
- compile_net(net)
-
-
- def test_normal_split_with_offset():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=2, global_rank=0)
- strategy1 = ((2, 1), (1, 2))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3, split_string="manual_split_with_offset", split_tuple=((4, 0), (4, 4)))
- compile_net(net)
-
-
- def test_auto_parallel_error():
- context.set_context(save_graphs=True)
- context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=2, global_rank=0)
- net = Net()
- with pytest.raises(RuntimeError):
- compile_net(net)
-
-
- def test_axis_error():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=2, global_rank=0)
- strategy1 = ((2, 1), (1, 2))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3, axis=1)
- with pytest.raises(RuntimeError):
- compile_net(net)
-
-
- def test_strategy_error():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((4, 1), (8, 1))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3)
- with pytest.raises(RuntimeError):
- compile_net(net)
-
-
- def test_strategy_error2():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((4, 1), (1, 8))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3)
- with pytest.raises(RuntimeError):
- compile_net(net)
-
-
- def test_strategy_error3():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
- strategy1 = ((2, 1), (1, 2))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3)
- with pytest.raises(RuntimeError):
- compile_net(net)
-
-
- def test_strategy_error4():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=2, global_rank=0)
- strategy1 = ((2, 8), (1, 2))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3)
- with pytest.raises(RuntimeError):
- compile_net(net)
-
-
- def test_strategy_error5():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=4, global_rank=0)
- strategy1 = ((4, 1), (1, 4))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3)
- with pytest.raises(RuntimeError):
- compile_net(net)
-
-
- def test_split_tuple_error():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=2, global_rank=0)
- strategy1 = ((2, 1), (1, 2))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3, split_tuple=((5, 0), (5, 5)))
- with pytest.raises(RuntimeError):
- compile_net(net)
-
-
- def test_parameter_use_tensor_error():
- context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=2, global_rank=0)
- strategy1 = ((2, 1), (1, 2))
- strategy2 = ((1, 2, 1), (1, 2, 1))
- strategy3 = ((1, 2), (2, 1))
- net = Net(strategy1, strategy2, strategy3, init_flag=False)
- with pytest.raises(RuntimeError):
- compile_net(net)
|