|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """array Operations."""
- from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils
- from mindspore.common import dtype as mstype
- from mindspore._checkparam import Validator as validator
- from mindspore._checkparam import Rel
- from mindspore.ops.primitive import constexpr
- from mindspore.ops import functional as F
- from .. import operations as P
- from ..operations import _inner_ops as inner
-
-
- @constexpr
- def _check_is_int(arg_value, arg_name, op_name):
- arg_value = validator.check_is_int(arg_value, arg_name, op_name)
- return arg_value
-
-
- @constexpr
- def _check_positive_int(arg_value, arg_name, op_name):
- arg_value = validator.check_positive_int(arg_value, arg_name, op_name)
- return arg_value
-
-
- @constexpr
- def _check_axis_range(arg_value, limit, arg_name, op_name):
- arg_value = validator.check_int_range(arg_value, -limit, limit, Rel.INC_LEFT, arg_name, op_name)
- return arg_value
-
-
- @constexpr
- def _cal_repeat_dims(x_rank, rep, expand_axis):
- rep_dims = [1] * (x_rank + 1)
- rep_dims[expand_axis] = rep
- return tuple(rep_dims)
-
-
- @constexpr
- def _cal_reshape(x_shape, rep, axis):
- x_reshape = list(x_shape)
- x_reshape[axis] *= rep
- return tuple(x_reshape)
-
-
- def repeat_elements(x, rep, axis=0):
- """
- Repeat elements of a tensor along an axis, like np.repeat.
-
- Args:
- x (Tensor): The tensor to repeat values for. Must be of type: float16,
- float32, int8, uint8, int16, int32, or int64.
- rep (int): The number of times to repeat, must be positive, required.
- axis (int): The axis along which to repeat, default 0.
-
- Outputs:
- One tensor with values repeated along the specified axis. If x has shape
- (s1, s2, ..., sn) and axis is i, the output will have shape (s1, s2, ...,
- si * rep, ..., sn). The output type will be the same as the type of `x`.
-
- Supported Platforms:
- ``Ascend`` ``GPU`` ``CPU``
-
- Examples:
- >>> x = Tensor(np.array([[0, 1, 2], [3, 4, 5]]), mindspore.int32)
- >>> output = C.repeat_elements(x, rep = 2, axis = 0)
- >>> print(output)
- [[0 1 2]
- [0 1 2]
- [3 4 5]
- [3 4 5]]
- """
- const_utils.check_valid_type(F.dtype(x), mstype.number_type, 'input x')
- rep = _check_positive_int(rep, "rep", "repeat_elements")
- axis = _check_is_int(axis, "axis", "repeat_elements")
-
- shape_op = P.Shape()
- rank_op = P.Rank()
- tile_op = P.Tile()
- expand_dims_op = P.ExpandDims()
- reshape_op = P.Reshape()
-
- x_rank = rank_op(x)
- axis = _check_axis_range(axis, x_rank, "axis", "repeat_elements")
-
- expand_axis = axis + 1
- x_expand = expand_dims_op(x, expand_axis)
- rep_dims = _cal_repeat_dims(x_rank, rep, expand_axis)
- x_expand = tile_op(x_expand, rep_dims)
- x_shape = shape_op(x)
- x_reshape = _cal_reshape(x_shape, rep, axis)
- x_rep = reshape_op(x_expand, x_reshape)
-
- return x_rep
-
- def sequence_mask(lengths, maxlen):
- """
- Returns a mask tensor representing the first N positions of each cell.
-
- If lengths has shape [d_1, d_2, ..., d_n], then the resulting tensor mask has type dtype and shape
- [d_1, d_2, ..., d_n, maxlen], with mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
-
- Args:
- length (Tensor): Tensor to calculate the mask for. All values in this tensor must be
- less than `maxlen`. Must be type int32 or int64.
-
- maxlen (int): size of the last dimension of returned tensor. Must be positive and same
- type as elements in `lengths`.
-
- Outputs:
- One mask tensor of shape lengths.shape + (maxlen,).
-
- Supported Platforms:
- ``GPU``
-
- Examples:
- >>> x = Tensor(np.array([[1, 3], [2, 0]])
- >>> sequence_mask = P.SequenceMask()
- >>> output = sequence_mask(x, 3)
- >>> print(output)
- [[[True, False, False],
- [True, True, True]],
- [[True, True, False],
- [False, False, False]]]
- """
- return inner.SequenceMask()(lengths, maxlen)
|