|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import time
-
- import mindspore.dataset as ds
- import mindspore.dataset.transforms.vision.c_transforms as vision
- from mindspore import log as logger
-
- DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
- TF_FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
- TF_SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
-
-
- def test_case_0():
- """
- Test Repeat
- """
- # apply dataset operations
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
-
- # define parameters
- repeat_count = 2
- data = data.repeat(repeat_count)
-
- data = data.device_que()
- data.send()
- time.sleep(0.1)
- data.stop_send()
-
-
- def test_case_1():
- """
- Test Batch
- """
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- # define data augmentation parameters
- resize_height, resize_width = 224, 224
-
- # define map operations
- decode_op = vision.Decode()
- resize_op = vision.Resize((resize_height, resize_width))
-
- # apply map operations on images
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=resize_op)
-
- batch_size = 3
- data = data.batch(batch_size, drop_remainder=True)
-
- data = data.device_que()
- data.send()
- time.sleep(0.1)
- data.stop_send()
-
-
- def test_case_2():
- """
- Test Batch & Repeat
- """
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- # define data augmentation parameters
- resize_height, resize_width = 224, 224
-
- # define map operations
- decode_op = vision.Decode()
- resize_op = vision.Resize((resize_height, resize_width))
-
- # apply map operations on images
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=resize_op)
-
- batch_size = 2
- data = data.batch(batch_size, drop_remainder=True)
-
- data = data.repeat(2)
-
- data = data.device_que()
- assert data.get_repeat_count() == 2
- data.send()
- time.sleep(0.1)
- data.stop_send()
-
-
- def test_case_3():
- """
- Test Repeat & Batch
- """
- data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
- # define data augmentation parameters
- resize_height, resize_width = 224, 224
-
- # define map operations
- decode_op = vision.Decode()
- resize_op = vision.Resize((resize_height, resize_width))
-
- # apply map operations on images
- data = data.map(input_columns=["image"], operations=decode_op)
- data = data.map(input_columns=["image"], operations=resize_op)
-
- data = data.repeat(2)
-
- batch_size = 2
- data = data.batch(batch_size, drop_remainder=True)
-
- data = data.device_que()
- data.send()
- time.sleep(0.1)
- data.stop_send()
-
-
- def test_case_tf_file():
- data = ds.TFRecordDataset(TF_FILES, TF_SCHEMA_FILE, shuffle=ds.Shuffle.FILES)
-
- data = data.to_device()
- data.send()
- time.sleep(0.1)
- data.stop_send()
-
-
- if __name__ == '__main__':
- logger.info('===========now test Repeat============')
- test_case_0()
-
- logger.info('===========now test Batch============')
- test_case_1()
-
- logger.info('===========now test Batch & Repeat============')
- test_case_2()
-
- logger.info('===========now test Repeat & Batch============')
- test_case_3()
-
- logger.info('===========now test tf file============')
- test_case_tf_file()
|