|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- @File : test_summary.py
- @Author:
- @Date : 2019-07-4
- @Desc : test summary function
- """
- import logging
- import os
- import random
-
- import numpy as np
- import pytest
-
- import mindspore.nn as nn
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
- from mindspore.train.callback import SummaryStep
- from mindspore.train.summary.summary_record import SummaryRecord, _cache_summary_tensor_data
-
- CUR_DIR = os.getcwd()
- SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/"
-
- log = logging.getLogger("test")
- log.setLevel(level=logging.ERROR)
-
-
- def get_test_data(step):
- """ get_test_data """
- test_data_list = []
- tag1 = "x1[:Scalar]"
- tag2 = "x2[:Scalar]"
- np1 = np.array(step + 1).astype(np.float32)
- np2 = np.array(step + 2).astype(np.float32)
-
- dict1 = {}
- dict1["name"] = tag1
- dict1["data"] = Tensor(np1)
-
- dict2 = {}
- dict2["name"] = tag2
- dict2["data"] = Tensor(np2)
-
- test_data_list.append(dict1)
- test_data_list.append(dict2)
-
- return test_data_list
-
-
- # Test 1: summary sample of scalar
- def test_scalar_summary_sample():
- """ test_scalar_summary_sample """
- log.debug("begin test_scalar_summary_sample")
- # step 0: create the thread
- test_writer = SummaryRecord(SUMMARY_DIR, file_suffix="_MS_SCALAR")
-
- # step 1: create the test data for summary
-
- # step 2: create the Event
- for i in range(1, 500):
- test_data = get_test_data(i)
- _cache_summary_tensor_data(test_data)
- test_writer.record(i)
-
- # step 3: send the event to mq
-
- # step 4: accept the event and write the file
- test_writer.close()
-
- log.debug("finished test_scalar_summary_sample")
-
-
- def get_test_data_shape_1(step):
- """ get_test_data_shape_1 """
- test_data_list = []
- tag1 = "x1[:Scalar]"
- tag2 = "x2[:Scalar]"
- np1 = np.array([step + 1]).astype(np.float32)
- np2 = np.array([step + 2]).astype(np.float32)
-
- dict1 = {}
- dict1["name"] = tag1
- dict1["data"] = Tensor(np1)
-
- dict2 = {}
- dict2["name"] = tag2
- dict2["data"] = Tensor(np2)
-
- test_data_list.append(dict1)
- test_data_list.append(dict2)
-
- return test_data_list
-
-
- # Test: shape = (1,)
- def test_scalar_summary_sample_with_shape_1():
- """ test_scalar_summary_sample_with_shape_1 """
- log.debug("begin test_scalar_summary_sample_with_shape_1")
- # step 0: create the thread
- test_writer = SummaryRecord(SUMMARY_DIR, file_suffix="_MS_SCALAR")
-
- # step 1: create the test data for summary
-
- # step 2: create the Event
- for i in range(1, 100):
- test_data = get_test_data_shape_1(i)
- _cache_summary_tensor_data(test_data)
- test_writer.record(i)
-
- # step 3: send the event to mq
-
- # step 4: accept the event and write the file
- test_writer.close()
-
- log.debug("finished test_scalar_summary_sample")
-
-
- # Test: test with ge
- class SummaryDemo(nn.Cell):
- """ SummaryDemo definition """
-
- def __init__(self, ):
- super(SummaryDemo, self).__init__()
- self.s = P.ScalarSummary()
- self.histogram_summary = P.HistogramSummary()
- self.add = P.TensorAdd()
-
- def construct(self, x, y):
- self.s("x1", x)
- z = self.add(x, y)
- self.s("z1", z)
- self.s("y1", y)
- self.histogram_summary("histogram", z)
- return z
-
-
- def test_scalar_summary_with_ge():
- """ test_scalar_summary_with_ge """
- log.debug("begin test_scalar_summary_with_ge")
-
- # step 0: create the thread
- test_writer = SummaryRecord(SUMMARY_DIR, file_suffix="_MS_SCALAR")
-
- # step 1: create the network for summary
- x = Tensor(np.array([1.1]).astype(np.float32))
- y = Tensor(np.array([1.2]).astype(np.float32))
- net = SummaryDemo()
- net.set_train()
-
- # step 2: create the Event
- steps = 100
- for i in range(1, steps):
- x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
- y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
- net(x, y)
- test_writer.record(i)
-
- # step 3: close the writer
- test_writer.close()
-
- log.debug("finished test_scalar_summary_with_ge")
-
-
- # test the problem of two consecutive use cases going wrong
- def test_scalar_summary_with_ge_2():
- """ test_scalar_summary_with_ge_2 """
- log.debug("begin test_scalar_summary_with_ge_2")
-
- # step 0: create the thread
- test_writer = SummaryRecord(SUMMARY_DIR, file_suffix="_MS_SCALAR")
-
- # step 1: create the network for summary
- x = Tensor(np.array([1.1]).astype(np.float32))
- y = Tensor(np.array([1.2]).astype(np.float32))
- net = SummaryDemo()
- net.set_train()
-
- # step 2: create the Event
- steps = 100
- for i in range(1, steps):
- x = Tensor(np.array([1.1]).astype(np.float32))
- y = Tensor(np.array([1.2]).astype(np.float32))
- net(x, y)
- test_writer.record(i)
-
- # step 3: close the writer
- test_writer.close()
-
- log.debug("finished test_scalar_summary_with_ge_2")
-
-
- def test_validate():
- sr = SummaryRecord(SUMMARY_DIR)
-
- with pytest.raises(ValueError):
- SummaryStep(sr, 0)
- with pytest.raises(ValueError):
- SummaryStep(sr, -1)
- with pytest.raises(ValueError):
- SummaryStep(sr, 1.2)
- with pytest.raises(ValueError):
- SummaryStep(sr, True)
- with pytest.raises(ValueError):
- SummaryStep(sr, "str")
- sr.record(1)
- with pytest.raises(ValueError):
- sr.record(False)
- with pytest.raises(ValueError):
- sr.record(2.0)
- with pytest.raises(ValueError):
- sr.record((1, 3))
- with pytest.raises(ValueError):
- sr.record([2, 3])
- with pytest.raises(ValueError):
- sr.record("str")
- with pytest.raises(ValueError):
- sr.record(sr)
- sr.close()
-
- SummaryStep(sr, 1)
- with pytest.raises(ValueError):
- SummaryStep(sr, 1.2)
- with pytest.raises(ValueError):
- SummaryStep(sr, False)
- with pytest.raises(ValueError):
- SummaryStep(sr, "str")
- with pytest.raises(ValueError):
- SummaryStep(sr, (1, 2))
- with pytest.raises(ValueError):
- SummaryStep(sr, [3, 4])
- with pytest.raises(ValueError):
- SummaryStep(sr, sr)
|