|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test_embedding """
- import numpy as np
-
- from mindspore import Tensor
- from mindspore import dtype as mstype
- from mindspore.model_zoo.Bert_NEZHA import EmbeddingLookup, EmbeddingPostprocessor
- from ..ut_filter import non_graph_engine
-
-
- @non_graph_engine
- def test_check_embedding_lookup_1():
- m = EmbeddingLookup(vocab_size=32000,
- embedding_size=768,
- embedding_shape=[1, 128, 768],
- use_one_hot_embeddings=False)
- m(Tensor(np.ones([128]), mstype.int32))
-
-
- @non_graph_engine
- def test_check_embedding_lookup_2():
- m = EmbeddingLookup(vocab_size=32000,
- embedding_size=768,
- embedding_shape=[1, 128, 768],
- use_one_hot_embeddings=True)
- m(Tensor(np.ones([128]), mstype.int32))
-
-
- @non_graph_engine
- def test_check_embedding_lookup_3():
- m = EmbeddingLookup(vocab_size=32000,
- embedding_size=768,
- embedding_shape=[1, 128, 768],
- use_one_hot_embeddings=True,
- initializer_range=0.01)
- m(Tensor(np.ones([128]), mstype.int32))
-
-
- @non_graph_engine
- def test_embedding_post_1():
- m = EmbeddingPostprocessor(embedding_size=768,
- embedding_shape=[1, 128, 768],
- use_token_type=True)
- m(Tensor(np.ones([128]), mstype.int32), Tensor(np.ones([1, 128, 768]), mstype.float32))
-
-
- @non_graph_engine
- def test_embedding_post_2():
- m = EmbeddingPostprocessor(embedding_size=768,
- embedding_shape=[1, 128, 768],
- use_token_type=True,
- initializer_range=0.3)
- m(Tensor(np.ones([128]), mstype.int32), Tensor(np.ones([1, 128, 768]), mstype.float32))
|