|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ test bert cell """
- import numpy as np
- import pytest
-
- from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertModel
- from ....dataset_mock import MindData
-
-
- def map_bert(record):
- target_data = {'input_ids': None, 'input_mask': None,
- 'segment_ids': None, 'next_sentence_labels': None,
- 'masked_lm_positions': None, 'masked_lm_ids': None,
- 'masked_lm_weights': None}
-
- sample = dt.parse_single_example(record, target_data)
-
- return sample['input_ids'], sample['input_mask'], sample['segment_ids'], \
- sample['next_sentence_labels'], sample['masked_lm_positions'], \
- sample['masked_lm_ids'], sample['masked_lm_weights']
-
-
- def test_bert_model():
- # test for config.hidden_size % config.num_attention_heads != 0
- config_error = BertConfig(32, hidden_size=512, num_attention_heads=10)
- with pytest.raises(ValueError):
- BertModel(config_error, True)
-
-
- def get_dataset(batch_size=1):
- dataset_types = (np.int32, np.int32, np.int32, np.int32, np.int32, np.int32, np.int32)
- dataset_shapes = ((batch_size, 128), (batch_size, 128), (batch_size, 128), (batch_size, 1),
- (batch_size, 20), (batch_size, 20), (batch_size, 20))
-
- dataset = MindData(size=2, batch_size=batch_size,
- np_types=dataset_types,
- output_shapes=dataset_shapes,
- input_indexs=(0, 1))
- return dataset
|