|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """test topk"""
- import math
-
- import numpy as np
- import pytest
-
- from mindspore import Tensor
- from mindspore.nn.metrics import TopKCategoricalAccuracy, Top1CategoricalAccuracy, Top5CategoricalAccuracy
-
-
- def test_type_topk():
- with pytest.raises(TypeError):
- TopKCategoricalAccuracy(2.1)
-
-
- def test_value_topk():
- with pytest.raises(ValueError):
- TopKCategoricalAccuracy(-1)
-
-
- def test_input_topk():
- x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2],
- [0.3, 0.1, 0.5, 0.1, 0.],
- [0.9, 0.6, 0.2, 0.01, 0.3]]))
- topk = TopKCategoricalAccuracy(3)
- topk.clear()
- with pytest.raises(ValueError):
- topk.update(x)
-
-
- def test_topk():
- """test_topk"""
- x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2],
- [0.1, 0.35, 0.5, 0.2, 0.],
- [0.9, 0.6, 0.2, 0.01, 0.3]]))
- y = Tensor(np.array([2, 0, 1]))
- y2 = Tensor(np.array([[0, 0, 1, 0, 0],
- [1, 0, 0, 0, 0],
- [0, 1, 0, 0, 0]]))
- topk = TopKCategoricalAccuracy(3)
- topk.clear()
- topk.update(x, y)
- result = topk.eval()
- result2 = topk(x, y2)
- assert math.isclose(result, 2 / 3)
- assert math.isclose(result2, 2 / 3)
-
-
- def test_zero_topk():
- topk = TopKCategoricalAccuracy(3)
- topk.clear()
- with pytest.raises(RuntimeError):
- topk.eval()
-
-
- def test_top1():
- """test_top1"""
- x = Tensor(np.array([[0.2, 0.5, 0.2, 0.1, 0.],
- [0.1, 0.35, 0.25, 0.2, 0.1],
- [0.9, 0.1, 0, 0., 0]]))
- y = Tensor(np.array([2, 0, 0]))
- y2 = Tensor(np.array([[0, 0, 1, 0, 0],
- [1, 0, 0, 0, 0],
- [1, 0, 0, 0, 0]]))
- topk = Top1CategoricalAccuracy()
- topk.clear()
- topk.update(x, y)
- result = topk.eval()
- result2 = topk(x, y2)
- assert math.isclose(result, 1 / 3)
- assert math.isclose(result2, 1 / 3)
-
-
- def test_top5():
- """test_top5"""
- x = Tensor(np.array([[0.15, 0.4, 0.1, 0.05, 0., 0.2, 0.1],
- [0.1, 0.35, 0.25, 0.2, 0.1, 0., 0.],
- [0., 0.5, 0.2, 0.1, 0.1, 0.1, 0.]]))
- y = Tensor(np.array([2, 0, 0]))
- y2 = Tensor(np.array([[0, 0, 1, 0, 0],
- [1, 0, 0, 0, 0],
- [1, 0, 0, 0, 0]]))
- topk = Top5CategoricalAccuracy()
- topk.clear()
- topk.update(x, y)
- result = topk.eval()
- result2 = topk(x, y2)
- assert math.isclose(result, 2 / 3)
- assert math.isclose(result2, 2 / 3)
|