|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Summary gpu st."""
- import os
- import random
- import tempfile
- import shutil
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore.common.tensor import Tensor
- from mindspore.ops import operations as P
- from mindspore.train.summary.summary_record import SummaryRecord
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- class SummaryNet(nn.Cell):
- """Summary net."""
- def __init__(self, tag_tuple=None, scalar=1):
- super(SummaryNet, self).__init__()
- self.summary_s = P.ScalarSummary()
- self.summary_i = P.ImageSummary()
- self.summary_t = P.TensorSummary()
- self.histogram_summary = P.HistogramSummary()
- self.add = P.TensorAdd()
- self.tag_tuple = tag_tuple
- self.scalar = scalar
-
- def construct(self, x, y, image):
- """Run summary net."""
- self.summary_i("image", image)
- self.summary_s("x1", x)
- z = self.add(x, y)
- self.summary_t("z1", z)
- self.histogram_summary("histogram", z)
- return z
-
-
- def train_summary_record(test_writer, steps):
- """Train and record summary."""
- net = SummaryNet()
- out_me_dict = {}
- for i in range(0, steps):
- x = Tensor(np.array([1.1 + random.uniform(1, 10)]).astype(np.float32))
- y = Tensor(np.array([1.2 + random.uniform(1, 10)]).astype(np.float32))
- image = Tensor(np.array([[[[1.2]]]]).astype(np.float32))
- out_put = net(x, y, image)
- test_writer.record(i)
- out_me_dict[i] = out_put.asnumpy()
- return out_me_dict
-
-
- class TestGpuSummary:
- """Test Gpu summary."""
- summary_dir = tempfile.mkdtemp(suffix='_gpu_summary')
-
- def setup_method(self):
- """Run before method."""
- if not os.path.exists(self.summary_dir):
- os.mkdir(self.summary_dir)
-
- def teardown_emthod(self):
- """Run after method."""
- if os.path.exists(self.summary_dir):
- shutil.rmtree(self.summary_dir)
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_summary_step10_summaryrecord1(self):
- """Test record 10 step summary."""
- with SummaryRecord(self.summary_dir) as test_writer:
- train_summary_record(test_writer, steps=10)
|