|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """multitype_ops directory test case"""
- import numpy as np
- from functools import partial, reduce
-
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import dtype as mstype
- from mindspore.ops import functional as F, composite as C
- import mindspore.context as context
- import pytest
-
- class TensorIntAutoCast(nn.Cell):
- def __init__(self,):
- super(TensorIntAutoCast, self).__init__()
- self.i = 2
- def construct(self, t):
- z = F.tensor_mul(t, self.i)
- return z
-
-
- class TensorFPAutoCast(nn.Cell):
- def __init__(self,):
- super(TensorFPAutoCast, self).__init__()
- self.f = 1.2
- def construct(self, t):
- z = F.tensor_mul(t, self.f)
- return z
-
-
- class TensorBoolAutoCast(nn.Cell):
- def __init__(self,):
- super(TensorBoolAutoCast, self).__init__()
- self.f = True
- def construct(self, t):
- z = F.tensor_mul(t, self.f)
- return z
-
- class TensorAutoCast(nn.Cell):
- def __init__(self,):
- super(TensorAutoCast, self).__init__()
- def construct(self, t1, t2):
- z = F.tensor_mul(t1, t2)
- return z
-
-
- def test_tensor_auto_cast():
- context.set_context(mode=context.GRAPH_MODE)
- t0 = Tensor([True, False], mstype.bool_)
- t_uint8 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint8)
- t_int8 = Tensor(np.ones([2, 1, 2, 2]), mstype.int8)
- t_int16 = Tensor(np.ones([2, 1, 2, 2]), mstype.int16)
- t_int32 = Tensor(np.ones([2, 1, 2, 2]), mstype.int32)
- t_int64 = Tensor(np.ones([2, 1, 2, 2]), mstype.int64)
- t_fp16 = Tensor(np.ones([2, 1, 2, 2]), mstype.float16)
- t_fp32 = Tensor(np.ones([2, 1, 2, 2]), mstype.float32)
- t_fp64 = Tensor(np.ones([2, 1, 2, 2]), mstype.float64)
- net = TensorAutoCast()
- rs = net(t_uint8, t_int8)
- assert rs.dtype() == mstype.int16
- rs = net(t_uint8, t_int16)
- assert rs.dtype() == mstype.int16
- rs = net(t_uint8, t_int32)
- assert rs.dtype() == mstype.int32
- rs = net(t_uint8, t_int64)
- assert rs.dtype() == mstype.int64
- rs = net(t_int8, t_int16)
- assert rs.dtype() == mstype.int16
- rs = net(t_int8, t_int32)
- assert rs.dtype() == mstype.int32
- rs = net(t_int8, t_int64)
- assert rs.dtype() == mstype.int64
- rs = net(t_int16, t_int32)
- assert rs.dtype() == mstype.int32
- rs = net(t_int16, t_int64)
- assert rs.dtype() == mstype.int64
- rs = net(t_int32, t_int64)
- assert rs.dtype() == mstype.int64
-
- rs = net(t_fp16, t_fp32)
- assert rs.dtype() == mstype.float32
- rs = net(t_fp16, t_fp64)
- assert rs.dtype() == mstype.float64
- rs = net(t_fp32, t_fp64)
- assert rs.dtype() == mstype.float64
-
- rs = net(t_uint8, t_fp16)
- assert rs.dtype() == mstype.float16
- rs = net(t_uint8, t_fp32)
- assert rs.dtype() == mstype.float32
- rs = net(t_uint8, t_fp64)
- assert rs.dtype() == mstype.float64
- rs = net(t_int8, t_fp64)
- assert rs.dtype() == mstype.float64
- rs = net(t_int16, t_fp64)
- assert rs.dtype() == mstype.float64
- rs = net(t_int32, t_fp64)
- assert rs.dtype() == mstype.float64
- rs = net(t_int64, t_fp64)
- assert rs.dtype() == mstype.float64
-
- rs = net(t_fp16, t_int8)
- assert rs.dtype() == mstype.float16
- rs = net(t_fp16, t_uint8)
- assert rs.dtype() == mstype.float16
- rs = net(t_fp16, t_int16)
- assert rs.dtype() == mstype.float16
- rs = net(t_fp16, t_int32)
- assert rs.dtype() == mstype.float16
- rs = net(t_fp16, t_int64)
- assert rs.dtype() == mstype.float16
-
- tint = TensorIntAutoCast()
- rs = tint(t_uint8)
- assert rs.dtype() == mstype.uint8
- rs = tint(t_int8)
- assert rs.dtype() == mstype.int8
- rs = tint(t_int16)
- assert rs.dtype() == mstype.int16
- rs = tint(t_int32)
- assert rs.dtype() == mstype.int32
- rs = tint(t_int64)
- assert rs.dtype() == mstype.int64
- rs = tint(t_fp16)
- assert rs.dtype() == mstype.float16
- rs = tint(t_fp32)
- assert rs.dtype() == mstype.float32
- rs = tint(t_fp64)
- assert rs.dtype() == mstype.float64
- tfp = TensorFPAutoCast()
- rs = tfp(t_uint8)
- assert rs.dtype() == mstype.float32
- rs = tfp(t_int8)
- assert rs.dtype() == mstype.float32
- rs = tfp(t_int16)
- assert rs.dtype() == mstype.float32
- rs = tfp(t_int32)
- assert rs.dtype() == mstype.float32
- rs = tfp(t_int64)
- assert rs.dtype() == mstype.float32
- rs = tfp(t_fp16)
- assert rs.dtype() == mstype.float32
- rs = tfp(t_fp32)
- assert rs.dtype() == mstype.float32
- rs = tfp(t_fp64)
- assert rs.dtype() == mstype.float64
-
- t_uint16 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint16)
- t_uint32 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint32)
- t_uint64 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint64)
- with pytest.raises(TypeError):
- net(t_uint16, t_uint8)
- with pytest.raises(TypeError):
- net(t_uint16, t_int8)
- with pytest.raises(TypeError):
- net(t_uint16, t_int16)
- with pytest.raises(TypeError):
- net(t_uint16, t_int32)
- with pytest.raises(TypeError):
- net(t_uint16, t_int64)
- with pytest.raises(TypeError):
- net(t_uint32, t_uint8)
- with pytest.raises(TypeError):
- net(t_uint32, t_int8)
- with pytest.raises(TypeError):
- net(t_uint32, t_int16)
- with pytest.raises(TypeError):
- net(t_uint32, t_int32)
- with pytest.raises(TypeError):
- net(t_uint32, t_int64)
- with pytest.raises(TypeError):
- net(t_uint64, t_uint8)
- with pytest.raises(TypeError):
- net(t_uint64, t_int8)
- with pytest.raises(TypeError):
- net(t_uint64, t_int16)
- with pytest.raises(TypeError):
- net(t_uint64, t_int32)
- with pytest.raises(TypeError):
- net(t_uint64, t_int64)
- with pytest.raises(TypeError):
- net(t_uint16, t_fp16)
- with pytest.raises(TypeError):
- net(t_uint16, t_fp32)
- with pytest.raises(TypeError):
- net(t_uint16, t_fp64)
- with pytest.raises(TypeError):
- net(t_uint32, t_fp16)
- with pytest.raises(TypeError):
- net(t_uint32, t_fp32)
- with pytest.raises(TypeError):
- net(t_uint32, t_fp64)
- with pytest.raises(TypeError):
- net(t_uint64, t_fp16)
- with pytest.raises(TypeError):
- net(t_uint64, t_fp32)
- with pytest.raises(TypeError):
- net(t_uint64, t_fp64)
-
-
- with pytest.raises(TypeError):
- tfp(t_uint16)
- with pytest.raises(TypeError):
- tfp(t_uint32)
- with pytest.raises(TypeError):
- tfp(t_uint64)
-
- with pytest.raises(TypeError):
- tint(t_uint16)
- with pytest.raises(TypeError):
- tint(t_uint32)
- with pytest.raises(TypeError):
- tint(t_uint64)
-
- bnet = TensorBoolAutoCast()
- with pytest.raises(TypeError):
- bnet(t_uint8)
- with pytest.raises(TypeError):
- bnet(t_int8)
- with pytest.raises(TypeError):
- bnet(t_int16)
- with pytest.raises(TypeError):
- bnet(t_int32)
- with pytest.raises(TypeError):
- bnet(t_int64)
- with pytest.raises(TypeError):
- bnet(t_fp16)
- with pytest.raises(TypeError):
- bnet(t_fp32)
- with pytest.raises(TypeError):
- bnet(t_fp64)
|