|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore import amp
- from mindspore.nn import Dense
- from mindspore.nn import TrainOneStepCell, WithLossCell
- from mindspore.nn.cell import Cell
- from mindspore.nn.layer.basic import Flatten
- from mindspore.nn.layer.conv import Conv2d
- from mindspore.nn.layer.normalization import BatchNorm2d
- from mindspore.nn.layer.pooling import MaxPool2d
- from mindspore.nn.optim import Momentum
- from mindspore.ops import operations as P
- from mindspore.ops.operations import TensorAdd
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
-
-
- def random_normal_init(shape, mean=0.0, stddev=0.01, seed=None):
- init_value = np.ones(shape).astype(np.float32) * 0.01
- return Tensor(init_value)
-
-
- def variance_scaling_raw(shape):
- variance_scaling_value = np.ones(shape).astype(np.float32) * 0.01
- return Tensor(variance_scaling_value)
-
-
- def weight_variable_0(shape):
- zeros = np.zeros(shape).astype(np.float32)
- return Tensor(zeros)
-
-
- def weight_variable_1(shape):
- ones = np.ones(shape).astype(np.float32)
- return Tensor(ones)
-
-
- def conv3x3(in_channels, out_channels, stride=1, padding=1):
- """3x3 convolution """
- weight_shape = (out_channels, in_channels, 3, 3)
- weight = variance_scaling_raw(weight_shape)
- return Conv2d(in_channels, out_channels,
- kernel_size=3, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")
-
-
- def conv1x1(in_channels, out_channels, stride=1, padding=0):
- """1x1 convolution"""
- weight_shape = (out_channels, in_channels, 1, 1)
- weight = variance_scaling_raw(weight_shape)
- return Conv2d(in_channels, out_channels,
- kernel_size=1, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")
-
-
- def conv7x7(in_channels, out_channels, stride=1, padding=0):
- """1x1 convolution"""
- weight_shape = (out_channels, in_channels, 7, 7)
- weight = variance_scaling_raw(weight_shape)
- return Conv2d(in_channels, out_channels,
- kernel_size=7, stride=stride, weight_init=weight, has_bias=False, pad_mode="same")
-
-
- def bn_with_initialize(out_channels):
- shape = (out_channels)
- mean = weight_variable_0(shape)
- var = weight_variable_1(shape)
- beta = weight_variable_0(shape)
- gamma = weight_variable_1(shape)
- bn = BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
- beta_init=beta, moving_mean_init=mean, moving_var_init=var)
- return bn
-
-
- def bn_with_initialize_last(out_channels):
- shape = (out_channels)
- mean = weight_variable_0(shape)
- var = weight_variable_1(shape)
- beta = weight_variable_0(shape)
- gamma = weight_variable_0(shape)
- bn = BatchNorm2d(out_channels, momentum=0.1, eps=0.0001, gamma_init=gamma,
- beta_init=beta, moving_mean_init=mean, moving_var_init=var)
- return bn
-
-
- def fc_with_initialize(input_channels, out_channels):
- weight_shape = (out_channels, input_channels)
- bias_shape = (out_channels)
- weight = random_normal_init(weight_shape)
- bias = weight_variable_0(bias_shape)
-
- return Dense(input_channels, out_channels, weight, bias)
-
-
- class ResidualBlock(Cell):
- expansion = 4
-
- def __init__(self,
- in_channels,
- out_channels,
- stride=1,
- down_sample=False):
- super(ResidualBlock, self).__init__()
-
- out_chls = out_channels // self.expansion
- self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
- self.bn1 = bn_with_initialize(out_chls)
-
- self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
- self.bn2 = bn_with_initialize(out_chls)
-
- self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
- self.bn3 = bn_with_initialize_last(out_channels)
-
- self.relu = P.ReLU()
- self.add = TensorAdd()
-
- def construct(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- out = self.add(out, identity)
- out = self.relu(out)
-
- return out
-
-
- class ResidualBlockWithDown(Cell):
- expansion = 4
-
- def __init__(self,
- in_channels,
- out_channels,
- stride=1,
- down_sample=False):
- super(ResidualBlockWithDown, self).__init__()
-
- out_chls = out_channels // self.expansion
- self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
- self.bn1 = bn_with_initialize(out_chls)
-
- self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
- self.bn2 = bn_with_initialize(out_chls)
-
- self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
- self.bn3 = bn_with_initialize_last(out_channels)
-
- self.relu = P.ReLU()
- self.downSample = down_sample
-
- self.conv_down_sample = conv1x1(in_channels, out_channels, stride=stride, padding=0)
- self.bn_down_sample = bn_with_initialize(out_channels)
- self.add = TensorAdd()
-
- def construct(self, x):
- identity = x
-
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
-
- out = self.conv2(out)
- out = self.bn2(out)
- out = self.relu(out)
-
- out = self.conv3(out)
- out = self.bn3(out)
-
- identity = self.conv_down_sample(identity)
- identity = self.bn_down_sample(identity)
-
- out = self.add(out, identity)
- out = self.relu(out)
-
- return out
-
-
- class MakeLayer0(Cell):
-
- def __init__(self, block, layer_num, in_channels, out_channels, stride):
- super(MakeLayer0, self).__init__()
- self.a = ResidualBlockWithDown(in_channels, out_channels, stride=1, down_sample=True)
- self.b = block(out_channels, out_channels, stride=stride)
- self.c = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.a(x)
- x = self.b(x)
- x = self.c(x)
-
- return x
-
-
- class MakeLayer1(Cell):
-
- def __init__(self, block, layer_num, in_channels, out_channels, stride):
- super(MakeLayer1, self).__init__()
- self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
- self.b = block(out_channels, out_channels, stride=1)
- self.c = block(out_channels, out_channels, stride=1)
- self.d = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.a(x)
- x = self.b(x)
- x = self.c(x)
- x = self.d(x)
-
- return x
-
-
- class MakeLayer2(Cell):
-
- def __init__(self, block, layer_num, in_channels, out_channels, stride):
- super(MakeLayer2, self).__init__()
- self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
- self.b = block(out_channels, out_channels, stride=1)
- self.c = block(out_channels, out_channels, stride=1)
- self.d = block(out_channels, out_channels, stride=1)
- self.e = block(out_channels, out_channels, stride=1)
- self.f = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.a(x)
- x = self.b(x)
- x = self.c(x)
- x = self.d(x)
- x = self.e(x)
- x = self.f(x)
-
- return x
-
-
- class MakeLayer3(Cell):
-
- def __init__(self, block, layer_num, in_channels, out_channels, stride):
- super(MakeLayer3, self).__init__()
- self.a = ResidualBlockWithDown(in_channels, out_channels, stride=stride, down_sample=True)
- self.b = block(out_channels, out_channels, stride=1)
- self.c = block(out_channels, out_channels, stride=1)
-
- def construct(self, x):
- x = self.a(x)
- x = self.b(x)
- x = self.c(x)
-
- return x
-
-
- class ResNet(Cell):
-
- def __init__(self, block, layer_num, num_classes=100):
- super(ResNet, self).__init__()
-
- self.conv1 = conv7x7(3, 64, stride=2, padding=3)
-
- self.bn1 = bn_with_initialize(64)
- self.relu = P.ReLU()
- self.maxpool = MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
-
- self.layer1 = MakeLayer0(
- block, layer_num[0], in_channels=64, out_channels=256, stride=1)
- self.layer2 = MakeLayer1(
- block, layer_num[1], in_channels=256, out_channels=512, stride=2)
- self.layer3 = MakeLayer2(
- block, layer_num[2], in_channels=512, out_channels=1024, stride=2)
- self.layer4 = MakeLayer3(
- block, layer_num[3], in_channels=1024, out_channels=2048, stride=2)
-
- self.pool = nn.AvgPool2d(7, 1)
- self.fc = fc_with_initialize(512 * block.expansion, num_classes)
- self.flatten = Flatten()
-
- def construct(self, x):
- x = self.conv1(x)
- x = self.bn1(x)
- x = self.relu(x)
- x = self.maxpool(x)
-
- x = self.layer1(x)
- x = self.layer2(x)
- x = self.layer3(x)
- x = self.layer4(x)
-
- x = self.pool(x)
- x = self.flatten(x)
- x = self.fc(x)
- return x
-
-
- def resnet50(num_classes):
- return ResNet(ResidualBlock, [3, 4, 6, 3], num_classes)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_trainTensor(num_classes=10, epoch=8, batch_size=1):
- net = resnet50(num_classes)
- lr = 0.1
- momentum = 0.9
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum)
- criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- net_with_criterion = WithLossCell(net, criterion)
- train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer
- train_network.set_train()
- losses = []
- for i in range(0, epoch):
- data = Tensor(np.ones([batch_size, 3, 224, 224]).astype(np.float32) * 0.01)
- label = Tensor(np.ones([batch_size]).astype(np.int32))
- loss = train_network(data, label)
- losses.append(loss)
- assert (losses[-1].asnumpy() < 1)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_trainTensor_amp(num_classes=10, epoch=18, batch_size=16):
- net = resnet50(num_classes)
- lr = 0.1
- momentum = 0.9
- optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum)
- criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- train_network = amp.build_train_network(net, optimizer, criterion, level="O2")
- train_network.set_train()
- losses = []
- for i in range(0, epoch):
- data = Tensor(np.ones([batch_size, 3, 224, 224]).astype(np.float32) * 0.01)
- label = Tensor(np.ones([batch_size]).astype(np.int32))
- loss = train_network(data, label)
- losses.append(loss)
- assert (losses[-1][0].asnumpy() < 1)
- assert (losses[-1][1].asnumpy() == False)
- assert (losses[-1][2].asnumpy() > 1)
|