|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- """
- Area under cure metric
- """
-
- from mindspore.nn.metrics import Metric
- from sklearn.metrics import roc_auc_score
-
- class AUCMetric(Metric):
- """
- Area under cure metric
- """
-
- def __init__(self):
- super(AUCMetric, self).__init__()
- self.clear()
-
- def clear(self):
- """Clear the internal evaluation result."""
- self.true_labels = []
- self.pred_probs = []
-
- def update(self, *inputs): # inputs
- all_predict = inputs[1].asnumpy() # predict
- all_label = inputs[2].asnumpy() # label
- self.true_labels.extend(all_label.flatten().tolist())
- self.pred_probs.extend(all_predict.flatten().tolist())
-
- def eval(self):
- if len(self.true_labels) != len(self.pred_probs):
- raise RuntimeError(
- 'true_labels.size is not equal to pred_probs.size()')
-
- auc = roc_auc_score(self.true_labels, self.pred_probs)
- print("====" * 20 + " auc_metric end")
- print("====" * 20 + " auc: {}".format(auc))
- return auc
|