|
- /**
- * Copyright 2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include <string>
- #include <vector>
- #include "common/common_test.h"
- #include "include/api/types.h"
- #include "minddata/dataset/include/execute.h"
- #include "minddata/dataset/include/transforms.h"
- #include "minddata/dataset/include/vision.h"
- #ifdef ENABLE_ACL
- #include "minddata/dataset/include/vision_ascend.h"
- #endif
- #include "minddata/dataset/kernels/tensor_op.h"
- #include "include/api/model.h"
- #include "include/api/serialization.h"
- #include "include/api/context.h"
-
- using namespace mindspore;
- using namespace mindspore::dataset;
- using namespace mindspore::dataset::vision;
-
- class TestDE : public ST::Common {
- public:
- TestDE() {}
- };
-
- TEST_F(TestDE, TestResNetPreprocess) {
- // Read images
- std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
- mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
- auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
-
- // Define transform operations
- auto decode(new vision::Decode());
- auto resize(new vision::Resize({224, 224}));
- auto normalize(
- new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
- auto hwc2chw(new vision::HWC2CHW());
-
- mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
-
- // Apply transform on images
- Status rc = Transform(image, &image);
-
- // Check image info
- ASSERT_TRUE(rc.IsOk());
- ASSERT_EQ(image.Shape().size(), 3);
- ASSERT_EQ(image.Shape()[0], 3);
- ASSERT_EQ(image.Shape()[1], 224);
- ASSERT_EQ(image.Shape()[2], 224);
- }
-
- TEST_F(TestDE, TestDvpp) {
- #ifdef ENABLE_ACL
- // Read images from target directory
- std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
- mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
- auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
-
- // Define dvpp transform
- std::vector<uint32_t> crop_paras = {224, 224};
- std::vector<uint32_t> resize_paras = {256, 256};
- auto decode_resize_crop(new vision::DvppDecodeResizeCropJpeg(crop_paras, resize_paras));
- mindspore::dataset::Execute Transform(decode_resize_crop, MapTargetDevice::kAscend310);
-
- // Apply transform on images
- Status rc = Transform(image, &image);
-
- // Check image info
- ASSERT_TRUE(rc.IsOk());
- ASSERT_EQ(image.Shape().size(), 3);
- int32_t real_h = 0;
- int32_t real_w = 0;
- int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
- if (crop_paras.size() == 1) {
- real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
- real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
- } else {
- real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
- real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
- }
- /* Use in the future
- ASSERT_EQ(image.Shape()[0], real_h); // For image in YUV format, each pixel takes 1.5 byte
- ASSERT_EQ(image.Shape()[1], real_w);
- ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
- */
- ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
- ASSERT_EQ(image.Shape()[1], 1);
- ASSERT_EQ(image.Shape()[2], 1);
- ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
- #endif
- }
-
- TEST_F(TestDE, TestDvppSinkMode) {
- #ifdef ENABLE_ACL
- // Read images from target directory
- std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
- mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
- auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
-
- // Define dvpp transform
- std::vector<int32_t> crop_paras = {224, 224};
- std::vector<int32_t> resize_paras = {256};
- std::shared_ptr<TensorTransform> decode(new vision::Decode());
- std::shared_ptr<TensorTransform> resize(new vision::Resize(resize_paras));
- std::shared_ptr<TensorTransform> centercrop(new vision::CenterCrop(crop_paras));
- std::vector<std::shared_ptr<TensorTransform>> transforms = {decode, resize, centercrop};
- mindspore::dataset::Execute Transform(transforms, MapTargetDevice::kAscend310);
-
- // Apply transform on images
- Status rc = Transform(image, &image);
-
- // Check image info
- ASSERT_TRUE(rc.IsOk());
- ASSERT_EQ(image.Shape().size(), 3);
- int32_t real_h = 0;
- int32_t real_w = 0;
- int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
- if (crop_paras.size() == 1) {
- real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
- real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
- } else {
- real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
- real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
- }
- ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
- ASSERT_EQ(image.Shape()[1], 1);
- ASSERT_EQ(image.Shape()[2], 1);
- ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
- Transform.DeviceMemoryRelease();
- #endif
- }
-
- TEST_F(TestDE, TestDvppDecodeResizeCropNormalize) {
- #ifdef ENABLE_ACL
- std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
- mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
- auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
-
- // Define dvpp transform
- std::vector<int32_t> crop_paras = {416};
- std::vector<int32_t> resize_paras = {512};
- std::vector<float> mean = {0.485 * 255, 0.456 * 255, 0.406 * 255};
- std::vector<float> std = {0.229 * 255, 0.224 * 255, 0.225 * 255};
- auto decode(new vision::Decode());
- auto resize(new vision::Resize(resize_paras));
- auto centercrop(new vision::CenterCrop(crop_paras));
- auto normalize(new vision::Normalize(mean, std));
- std::vector<TensorTransform *> trans_lists = {decode, resize, centercrop, normalize};
- mindspore::dataset::Execute Transform(trans_lists, MapTargetDevice::kAscend310);
-
- std::string aipp_cfg = Transform.AippCfgGenerator();
- ASSERT_EQ(aipp_cfg, "./aipp.cfg");
-
- // Apply transform on images
- Status rc = Transform(image, &image);
-
- // Check image info
- ASSERT_TRUE(rc.IsOk());
- ASSERT_EQ(image.Shape().size(), 3);
- int32_t real_h = 0;
- int32_t real_w = 0;
- int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
- if (crop_paras.size() == 1) {
- real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
- real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
- } else {
- real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
- real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
- }
- ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
- ASSERT_EQ(image.Shape()[1], 1);
- ASSERT_EQ(image.Shape()[2], 1);
- ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
- Transform.DeviceMemoryRelease();
- #endif
- }
|