|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """optimizer"""
- from typing import Iterable
-
- import numpy as np
-
- import mindspore
- from mindspore.ops import functional as F, composite as C, operations as P
- from mindspore.nn.cell import Cell
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.common.initializer import initializer
- import mindspore.common.dtype as mstype
- from mindspore._checkparam import Validator as validator
- from mindspore._checkparam import Rel
- from mindspore.common.tensor import Tensor
- from mindspore import log as logger
-
- __all__ = ['Optimizer']
-
-
- class Optimizer(Cell):
- """
- Base class for all optimizers.
-
- This class defines the API to add Ops to train a model.
-
- Note:
- This class defines the API to add Ops to train a model. Never use
- this class directly, but instead instantiate one of its subclasses.
-
- Some optimizers support separating parameter groups. Different parameter groups can set different
- `learning_rate` and `weight_decay`.
-
- When separating parameter groups, the weight decay in each group will be applied on the parameters if the
- value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
- applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
-
- To improve parameter groups performance, the customized order of parameters can be supported.
-
- Args:
- learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
- Iterable or a Tensor and the dims of the Tensor is 1,
- use dynamic learning rate, then the i-th step will
- take the i-th value as the learning rate.
- When the learning_rate is float or learning_rate is a Tensor
- but the dims of the Tensor is 0, use fixed learning rate.
- Other cases are not supported. It should be equal to or greater
- than 0. If the type of `learning_rate` input is int, it will be
- converted to float.
- parameters (Union[list[Parameter], list[dict]]): When the `parameters` is a list of `Parameter` which will be
- updated, the element in `parameters` should be class `Parameter`. When the `parameters` is a list of `dict`,
- the "params", "lr", "weight_decay" and "order_params" are the keys can be parsed.
-
- - params: Required. The value should be a list of `Parameter`.
-
- - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
- If not, the `learning_rate` in the API will be used.
-
- - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
- will be used. If not, the `weight_decay` in the API will be used.
-
- - order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
- the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
- in the value of 'order_params' but not in any group will use default learning rate and default weight
- decay.
-
- weight_decay (float): A floating point value for the weight decay. It should be equal to or greater than 0.
- If the type of `weight_decay` input is int, it will be converted to float. Default: 0.0.
- loss_scale (float): A floating point value for the loss scale. It should be greater than 0. If the
- type of `loss_scale` input is int, it will be converted to float. Default: 1.0.
-
- Raises:
- ValueError: If the learning_rate is a Tensor, but the dims of tensor is greater than 1.
- TypeError: If the learning_rate is not any of the three types: float, Tensor, Iterable.
- """
-
- def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0):
- super(Optimizer, self).__init__(auto_prefix=False)
- if parameters and not isinstance(parameters, list):
- parameters = list(parameters)
-
- if not parameters:
- raise ValueError("Optimizer got an empty parameter list.")
-
- if not isinstance(parameters[0], (dict, Parameter)):
- raise TypeError("Only a list of Parameter or dict can be supported.")
-
- if isinstance(loss_scale, int):
- loss_scale = float(loss_scale)
- validator.check_value_type("loss_scale", loss_scale, [float], self.cls_name)
- validator.check_number_range("loss_scale", loss_scale, 0.0, float("inf"), Rel.INC_NEITHER, self.cls_name)
-
- if isinstance(weight_decay, int):
- weight_decay = float(weight_decay)
- validator.check_value_type("weight_decay", weight_decay, [float], self.cls_name)
- validator.check_number_range("weight_decay", weight_decay, 0.0, float("inf"), Rel.INC_LEFT, self.cls_name)
-
- self.is_group = False
- self.is_group_lr = False
- self.is_group_params_ordered = False
- self.loss_scale = loss_scale
- if isinstance(learning_rate, int):
- learning_rate = float(learning_rate)
- if isinstance(learning_rate, float):
- self.dynamic_lr = False
- self.gather = None
- self.assignadd = None
- self.global_step = None
- self.scalar_lr = learning_rate
- else:
- self.dynamic_lr = True
- self.gather = P.GatherV2()
- self.assignadd = P.AssignAdd()
- self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step')
- self.scalar_lr = None
-
- learning_rate = self._get_single_lr(learning_rate)
- if isinstance(parameters[0], dict):
- self.is_group = True
- self.group_params = []
- self.group_lr = []
- self.group_weight_decay = []
- self._init_group_params(parameters, learning_rate, weight_decay)
-
- if self.is_group_lr:
- self.learning_rate = ParameterTuple(self.group_lr)
- else:
- self.learning_rate = Parameter(learning_rate, name="learning_rate")
-
- if self.is_group:
- self.parameters = ParameterTuple(self.group_params)
- self.weight_decay = tuple(self.group_weight_decay)
- decay_filter = lambda x: x > 0
- self.decay_flags = tuple(decay_filter(x) for x in self.weight_decay)
- else:
- self.parameters = ParameterTuple(parameters)
- self.weight_decay = weight_decay * loss_scale
- decay_filter = lambda x: 'beta' not in x.name and 'gamma' not in x.name
- self.decay_flags = tuple(decay_filter(x) for x in self.parameters)
- self.reciprocal_scale = 1.0 / loss_scale
- self.exec_weight_decay = any(self.decay_flags)
- self.param_length = len(self.parameters)
- self.map_ = C.Map()
-
- def decay_weight(self, gradients):
- """
- Weight decay.
-
- An approach to reduce the overfitting of a deep learning neural network model.
-
- Args:
- gradients (tuple[Tensor]): The gradients of `self.parameters`, and have the same shape with
- `self.parameters`.
-
- Returns:
- tuple[Tensor], The gradients after weight decay.
- """
- params = self.parameters
- if self.is_group:
- if self.exec_weight_decay:
- gradients = self.hyper_map(F.partial(_apply_decay), self.weight_decay, self.decay_flags,
- params, gradients)
- else:
- if self.weight_decay > 0:
- gradients = self.hyper_map(F.partial(_apply_decay, self.weight_decay), self.decay_flags,
- params, gradients)
-
- return gradients
-
- def scale_grad(self, gradients):
- """
- Loss scale for mixed precision.
-
- An approach of mixed precision training to improve the speed and energy efficiency of training deep neural
- network.
-
- Args:
- gradients (tuple[Tensor]): The gradients of `self.parameters`, and have the same shape with
- `self.parameters`.
-
- Returns:
- tuple[Tensor], The gradients after loss scale.
-
- """
- if self.reciprocal_scale != 1.0:
- gradients = self.map_(F.partial(_grad_scale, self.reciprocal_scale), gradients)
-
- return gradients
-
- def _get_single_lr(self, learning_rate):
- """Get learning rate in Tensor type."""
- if isinstance(learning_rate, float):
- validator.check_number_range("learning rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, self.cls_name)
- lr = Tensor(learning_rate, mstype.float32)
- elif isinstance(learning_rate, Iterable):
- lr = Tensor(np.array(list(learning_rate)).astype(np.float32))
- elif isinstance(learning_rate, Tensor):
- if learning_rate.dim() > 1:
- raise ValueError("Learning rate should be a 0 or 1 dim `Tensor`,"
- f"but got {learning_rate.dim()}.")
- if learning_rate.dim() == 1 and learning_rate.size() < 2:
- logger.warning("If want to use the dynamic learning rate, please make sure that the number "
- "of elements in the list, tuple or tensor passed is greater than 1.")
- lr = learning_rate
- else:
- raise TypeError("Learning rate should be float, Tensor or Iterable.")
- return lr
-
- def _parse_group_params(self, parameters, learning_rate):
- """Parse group params."""
- if self.dynamic_lr:
- dynamic_lr_length = learning_rate.size()
- else:
- dynamic_lr_length = 0
-
- for group_param in parameters:
- lr_length = dynamic_lr_length
- if 'order_params' in group_param.keys():
- if len(group_param.keys()) > 1:
- raise ValueError("The order params dict in group parameters should "
- "only include the 'order_params' key.")
- if not isinstance(group_param['order_params'], Iterable):
- raise TypeError("The value of 'order_params' should be an Iterable type.")
- self.is_group_params_ordered = True
- continue
-
- if 'lr' in group_param.keys():
- self.is_group_lr = True
- self._get_single_lr(group_param['lr'])
- if isinstance(group_param['lr'], Iterable):
- lr_length = len(group_param['lr'])
- self.dynamic_lr = True
- elif isinstance(group_param['lr'], Tensor):
- lr_length = group_param['lr'].size()
- self.dynamic_lr = True
-
- if dynamic_lr_length not in (lr_length, 0):
- raise ValueError("The dynamic learning rate in group should be the same size.")
-
- if not group_param['params']:
- raise ValueError("Optimizer got an empty group parameter list.")
-
- dynamic_lr_length = lr_length
- self.dynamic_lr_length = dynamic_lr_length
-
- def _init_group_params(self, parameters, learning_rate, weight_decay):
- """Init learning rate or weight decay in group params."""
- origin_dynamic_lr = self.dynamic_lr
- self._parse_group_params(parameters, learning_rate)
- if self.dynamic_lr and not origin_dynamic_lr:
- self.gather = P.GatherV2()
- self.assignadd = P.AssignAdd()
- self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step')
-
- params_store = []
- for group_param in parameters:
- if 'order_params' in group_param.keys():
- ordered_parameters = group_param['order_params']
- continue
-
- self.group_params += group_param['params']
- if 'lr' in group_param.keys():
- params_dynamic_lr = isinstance(group_param['lr'], (Iterable, Tensor))
- if self.dynamic_lr and not params_dynamic_lr:
- lr = Tensor(np.array([group_param['lr']] * self.dynamic_lr_length).astype(np.float32))
- else:
- lr = self._get_single_lr(group_param['lr'])
- else:
- if self.dynamic_lr and not origin_dynamic_lr:
- lr = Tensor(np.array([self.scalar_lr] * self.dynamic_lr_length).astype(np.float32))
- else:
- lr = learning_rate
-
- if 'weight_decay' in group_param.keys():
- validator.check_float_legal_value('weight_decay', group_param['weight_decay'], None)
- validator.check_number_range('weight_decay', group_param['weight_decay'], 0.0, float("inf"),
- Rel.INC_LEFT, self.cls_name)
- weight_decay_ = group_param['weight_decay'] * self.loss_scale
- else:
- weight_decay_ = weight_decay * self.loss_scale
-
- for key in group_param.keys():
- if key not in ('params', 'lr', 'weight_decay'):
- logger.warning(f"The optimizer cannot parse '{key}' when setting parameter groups.")
-
- for param in group_param['params']:
- validator.check_value_type("parameter", param, [Parameter], self.cls_name)
- if param.name in params_store:
- raise RuntimeError(f"The {param.name} parameter has appeared in parameter groups.")
-
- params_store.append(param.name)
- self.group_lr.append(Parameter(lr, name="lr_" + param.name))
- self.group_weight_decay.append(weight_decay_)
-
- if self.is_group_params_ordered:
- self._order_and_adjust_group_params(ordered_parameters, learning_rate, weight_decay)
-
- def _order_and_adjust_group_params(self, ordered_parameters, learning_rate, weight_decay):
- """
- Order group parameter, learning rate and weight decay in group params. And assign the parameters
- which in the value of 'order_params' but not in any group to default value.
- """
- params_length = len(ordered_parameters)
- ordered_learning_rate = [Parameter(learning_rate, name="lr_" + param.name) for param in ordered_parameters]
- ordered_weight_decay = [weight_decay * self.loss_scale] * params_length
- params_name = [param.name for param in ordered_parameters]
-
- for param, lr, wd in zip(self.group_params, self.group_lr, self.group_weight_decay):
- index = params_name.index(param.name)
- ordered_learning_rate[index] = lr
- ordered_weight_decay[index] = wd
-
- self.group_params = list(ordered_parameters)
- self.group_lr = ordered_learning_rate
- self.group_weight_decay = ordered_weight_decay
-
- def get_lr(self):
- """
- Get the learning rate of current step.
-
- Returns:
- float, the learning rate of current step.
- """
- if self.is_group_lr:
- lr = self.learning_rate
- if self.dynamic_lr:
- lr = ()
- for i in range(self.param_length):
- current_dynamic_lr = self.gather(self.learning_rate[i], self.global_step, 0)
- lr += (current_dynamic_lr,)
- F.control_depend(lr, self.assignadd(self.global_step, 1))
- else:
- lr = self.learning_rate
- if self.dynamic_lr:
- lr = self.gather(self.learning_rate, self.global_step, 0)
- F.control_depend(lr, self.assignadd(self.global_step, 1))
- return lr
-
- def get_lr_parameter(self, param):
- """
- Get the learning rate of parameter.
-
- Args:
- param (Union[Parameter, list[Parameter]]): The `Parameter` or list of `Parameter`.
-
- Returns:
- Parameter, single `Parameter` or `list[Parameter]` according to the input type.
- """
- if not isinstance(param, (Parameter, list)):
- raise TypeError(f"The parameter only support 'Parameter' or 'list' type.")
-
- if isinstance(param, list):
- lr = []
- for p in param:
- validator.check_value_type("parameter", p, [Parameter], self.cls_name)
- if p not in self.parameters:
- raise ValueError(f"The parameter {p.name} is not in optimizer.")
- if self.is_group_lr:
- index = self.parameters.index(p)
- lr.append(self.learning_rate[index])
- else:
- lr.append(self.learning_rate)
- else:
- if param not in self.parameters:
- raise ValueError(f"The parameter {param.name} is not in optimizer.")
- if self.is_group_lr:
- index = self.parameters.index(param)
- lr = self.learning_rate[index]
- else:
- lr = self.learning_rate
- return lr
-
- def construct(self, *hyper_params):
- raise NotImplementedError
-
-
- op_add = P.AddN()
-
- _apply_decay = C.MultitypeFuncGraph("apply_decay")
-
-
- @_apply_decay.register("Number", "Bool", "Tensor", "Tensor")
- def _tensor_apply_decay(weight_decay, if_apply, weight, gradient):
- """Get grad with weight_decay."""
- if if_apply:
- return op_add((weight * weight_decay, gradient))
- return gradient
-
-
- _grad_scale = C.MultitypeFuncGraph("grad_scale")
-
-
- @_grad_scale.register("Number", "Tensor")
- def tensor_grad_scale(scale, grad):
- """Get grad with scale."""
- if scale == 1.0:
- return grad
- return grad * scale
-
-
- @_grad_scale.register("Number", "Tuple")
- def tensor_grad_scale_with_sparse(scale, grad):
- """Get grad with scale."""
- if scale == 1.0:
- return grad
- return grad[0], grad[1] * scale, grad[2]
|