|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- @File : test_indexed_slices.py
- @Author:
- @Date : 2020-06-08
- @Desc : test mindspore indexed_slices's operation
- """
- import numpy as np
-
- import mindspore as ms
- import mindspore.nn as nn
- from mindspore.ops import composite as C
- from mindspore.ops import functional as F
- from mindspore.ops import operations as P
- from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
- from mindspore.ops.primitive import constexpr
- from mindspore.ops._grad.grad_base import bprop_getters
- from mindspore import Tensor, IndexedSlices, context
- from mindspore.common.parameter import Parameter, ParameterTuple
- from mindspore.common import dtype as mstype
- from mindspore._checkparam import Validator as validator
- from mindspore._checkparam import Rel
- from mindspore.nn import Optimizer
- from mindspore.nn import TrainOneStepCell, WithLossCell
-
- context.set_context(mode=context.GRAPH_MODE, enable_sparse=True)
-
- reduce_sum = P.ReduceSum()
- unsorted_segment_sum = P.UnsortedSegmentSum()
- transpose = P.Transpose()
- shape_op = P.Shape()
- reshape = P.Reshape()
- size_op = P.Size()
- invert_permutation = P.InvertPermutation()
- logical_and = P.LogicalAnd()
-
- @constexpr
- def _generate_shape_index(out_shape, indices_shape, axis):
- out_rank = len(out_shape)
- ind_rank = len(indices_shape)
- if axis < 0:
- axis += out_rank - ind_rank + 1
- perm_part1 = tuple(range(axis, axis + ind_rank))
- index = tuple(range(out_rank))
- perm = perm_part1 + index[:axis] + index[axis + ind_rank:]
- return perm
-
- @constexpr
- def _generate_inverse_index(x_shape, axis):
- x_rank = len(x_shape)
- index = tuple(range(x_rank))
- if axis < 0:
- axis += x_rank
- perm = index[1:1 + axis] + (0,) + index[1 + axis:]
- return perm
-
- class MySparseGatherV2(P.GatherV2):
- """
- For test
- """
-
- @bprop_getters.register(MySparseGatherV2)
- def get_bprop_sparse_gather_v2(self):
- """Generate bprop for MySparseGatherV2"""
-
- def bprop(x, indices, axis, out, dout):
- x_shp = shape_op(x)
- if axis == 0:
- indices_size = (size_op(indices),)
- x_tail_shp = x_shp[1:]
- values_shape = indices_size + x_tail_shp
- values = reshape(dout, values_shape)
- indices = reshape(indices, indices_size)
- return IndexedSlices(indices, values, x_shp), zeros_like(indices), zeros_like(axis)
- if F.rank(dout) == 0:
- dout = P.ExpandDims()(dout, -1)
- if F.rank(indices) == 0:
- indices = P.ExpandDims()(indices, -1)
- out_shp = shape_op(dout)
- ind_shp = shape_op(indices)
- # Example: out_shape:(3,2,3) axis 1 -> (1,0,2)
- perm_1 = _generate_shape_index(out_shp, ind_shp, axis)
- values_transpose = transpose(dout, perm_1)
- params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis])
- # Example: out_shape:(3,2,3) axis 2 -> (1,2,0)
- perm_2 = _generate_inverse_index(x_shp, axis)
- params_grad = transpose(params_grad, perm_2)
- return params_grad, zeros_like(indices), zeros_like(axis)
-
- return bprop
-
- adam_opt_for_map = C.MultitypeFuncGraph("adam_opt_for_map")
- @adam_opt_for_map.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
- "Tensor", "Tensor", "Tensor", "IndexedSlices", "Bool")
- def _update_run_op_for_map_indexed_slices(beta1, beta2, eps, lr, weight_decay_tensor, param,
- m, v, gradient, decay_flag):
- return gradient.values()
-
- @adam_opt_for_map.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
- "Tensor", "Tensor", "Tensor", "Tensor", "Bool")
- def _update_run_op_for_map_tensor(beta1, beta2, eps, lr, weight_decay_tensor, param,
- m, v, gradient, decay_flag):
- op_mul = P.Mul()
- op_square = P.Square()
- op_sqrt = P.Sqrt()
- op_cast = P.Cast()
- op_reshape = P.Reshape()
- op_shape = P.Shape()
-
- param_fp32 = op_cast(param, mstype.float32)
- m_fp32 = op_cast(m, mstype.float32)
- v_fp32 = op_cast(v, mstype.float32)
- gradient_fp32 = op_cast(gradient, mstype.float32)
-
- next_m = op_mul(beta1, m_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32) - beta1, gradient_fp32)
-
- next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32)
- - beta2, op_square(gradient_fp32))
-
- update = next_m / (op_sqrt(next_v) + eps)
- if decay_flag:
- update = update + op_mul(weight_decay_tensor, param_fp32)
-
- update_with_lr = op_mul(lr, update)
- next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32))
-
- next_v = F.depend(next_v, F.assign(param, next_param))
- next_v = F.depend(next_v, F.assign(m, next_m))
- next_v = F.depend(next_v, F.assign(v, next_v))
- return next_v
-
-
- def _check_param_value(beta1, beta2, eps, weight_decay, prim_name):
- """Check the type of inputs."""
- validator.check_value_type("beta1", beta1, [float], prim_name)
- validator.check_value_type("beta2", beta2, [float], prim_name)
- validator.check_value_type("eps", eps, [float], prim_name)
- validator.check_value_type("weight_dacay", weight_decay, [float], prim_name)
- validator.check_number_range("beta1", beta1, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
- validator.check_number_range("beta2", beta2, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
- validator.check_number_range("eps", eps, 0.0, float("inf"), Rel.INC_NEITHER, prim_name)
- validator.check_number_range("weight_decay", weight_decay, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
-
-
- class AdamWeightDecaySparse(Optimizer):
- def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0,
- decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name):
- super(AdamWeightDecaySparse, self).__init__(learning_rate, params)
- if self.is_group:
- raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
- _check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
- self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
- self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
- self.eps = Tensor(np.array([eps]).astype(np.float32))
- self.weight_decay_tensor = Tensor(np.array([weight_decay]).astype(np.float32))
-
- self.params = self.parameters
- self.moments1 = self.params.clone(prefix="adam_m", init='zeros')
- self.moments2 = self.params.clone(prefix="adam_v", init='zeros')
- self.decay_flag = tuple(decay_filter(x) for x in self.params)
- self.map = C.Map()
-
- def construct(self, gradients):
- lr = self.get_lr()
- updated_velocity = self.map(F.partial(adam_opt_for_map, self.beta1, self.beta2, self.eps, lr,
- self.weight_decay_tensor),
- self.params, self.moments1, self.moments2, gradients, self.decay_flag)
- return updated_velocity
-
-
- def test_indexed_slices_make_indexed_slices():
- class MakeIndexedSlices(nn.Cell):
- def __init__(self):
- super(MakeIndexedSlices, self).__init__()
- self.dense_shape = (3, 4)
- def construct(self, indices, values):
- ret = (IndexedSlices(indices, values, self.dense_shape),)
- return ret[0]
- indices = Tensor([[0, 0], [1, 2]])
- values = Tensor([1, 2], dtype=ms.float32)
- MakeIndexedSlices()(indices, values)
-
-
- def test_indexed_slices_attr():
- class IndexedSlicesGetAttr(nn.Cell):
- def __init__(self):
- super(IndexedSlicesGetAttr, self).__init__()
- self.dense_shape = (3, 4)
- def construct(self, indices, values):
- x = IndexedSlices(indices, values, self.dense_shape)
- return x.values(), x.indices(), x.dense_shape()
- indices = Tensor([[0, 0], [1, 2]])
- values = Tensor([1, 2], dtype=ms.float32)
- IndexedSlicesGetAttr()(indices, values)
-
-
- def test_indexed_slices_sparse_gatherv2_grad_all():
- grad_all = C.GradOperation('get_all', get_all=True)
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
- def construct(self, x, y):
- grad = grad_all(self.network)(x, y)
- return grad, grad[0], grad[1]
- class SparseGatherV2(nn.Cell):
- def __init__(self):
- super(SparseGatherV2, self).__init__()
- self.sparse_gatherv2 = MySparseGatherV2()
- self.axis = 0
- def construct(self, params, indices):
- return self.sparse_gatherv2(params, indices, self.axis)
- params = Tensor(np.ones([3, 1, 2]).astype(np.int32))
- indices = Tensor(np.array([0, 1]).astype(np.int32))
- GradWrap(SparseGatherV2())(params, indices)
-
-
- def test_indexed_slices_sparse_gatherv2_grad_with_pram():
- grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
- class GradWrap(nn.Cell):
- def __init__(self, network):
- super(GradWrap, self).__init__()
- self.network = network
- self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))
- def construct(self, x):
- weights = self.weights
- grad = grad_by_list(self.network, weights)(x)
- x = grad[0]
- return x, x.values(), x.indices(), x.dense_shape()
- class SparseGatherV2(nn.Cell):
- def __init__(self):
- super(SparseGatherV2, self).__init__()
- self.sparse_gatherv2 = MySparseGatherV2()
- self.axis = 0
- self.params = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.int32)), name="params")
- def construct(self, indices):
- return self.sparse_gatherv2(self.params, indices, self.axis)
- indices = Tensor(np.array([0, 1]).astype(np.int32))
- network = GradWrap(SparseGatherV2())
- network(indices)
-
-
- def test_indexed_slices_env_get():
- class Loss(nn.Cell):
- def __init__(self):
- super(Loss, self).__init__()
- def construct(self, base, target):
- return base
- class NetWithSparseGatherV2(nn.Cell):
- def __init__(self):
- super(NetWithSparseGatherV2, self).__init__()
- self.w1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="w1")
- self.w2 = Parameter(Tensor(np.ones([2, 1, 2]).astype(np.float32)), name="w2")
- self.gatherv2 = MySparseGatherV2()
- self.axis = 0
- def construct(self, indices):
- return self.gatherv2(self.w1, indices, self.axis) * self.w2
-
- inputs = Tensor(np.array([0, 1]).astype(np.int32))
- label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
- net = NetWithSparseGatherV2()
- net.set_train()
- loss = Loss()
- optimizer = AdamWeightDecaySparse(net.trainable_params())
-
- net_with_loss = WithLossCell(net, loss)
- train_network = TrainOneStepCell(net_with_loss, optimizer)
- train_network(inputs, label)
|