|
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """ auto mixed precision """
- import numpy as np
- from mindspore import amp
- from mindspore import nn
- from mindspore import Tensor
- from mindspore.common import dtype as mstype
- import mindspore.context as context
- from mindspore.model_zoo.resnet import resnet50
-
-
- def setup_module(module):
- context.set_context(mode=context.GRAPH_MODE)
-
-
- class Net(nn.Cell):
- def __init__(self, in_features, out_features):
- super(Net, self).__init__()
- self.dense = nn.Dense(in_features, out_features)
- self.loss = nn.MSELoss()
-
- def construct(self, input_x, label):
- output = self.dense(input_x)
- loss = self.loss(output, label)
- return loss
-
-
- class NetNoLoss(nn.Cell):
- def __init__(self, in_features, out_features):
- super(NetNoLoss, self).__init__()
- self.dense = nn.Dense(in_features, out_features)
-
- def construct(self, input_x):
- return self.dense(input_x)
-
-
- def test_amp_o0():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- net = Net(16, 16)
-
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_network = amp.build_train_network(net, optimizer, level="O0")
- output = train_network(inputs, label)
-
-
- def test_amp_o2():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- net = Net(16, 16)
-
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_network = amp.build_train_network(net, optimizer, level="O2")
- output = train_network(inputs, label)
-
-
- def test_amp_o2_loss():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- net = NetNoLoss(16, 16)
- loss = nn.MSELoss()
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_network = amp.build_train_network(net, optimizer, loss, level="O2")
- output = train_network(inputs, label)
-
-
- def test_amp_o0_loss():
- inputs = Tensor(np.ones([16, 16]).astype(np.float32))
- label = Tensor(np.zeros([16, 16]).astype(np.float32))
- net = NetNoLoss(16, 16)
- loss = nn.MSELoss()
- optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
- train_network = amp.build_train_network(net, optimizer, loss)
- output = train_network(inputs, label)
|