|
- # Copyright 2019 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import mindspore.dataset.transforms.vision.c_transforms as vision
- from util import save_and_check
-
- import mindspore.dataset as ds
- from mindspore import log as logger
-
- DATA_DIR_TF = ["../data/dataset/testTFTestAllTypes/test.data"]
- SCHEMA_DIR_TF = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
- COLUMNS_TF = ["col_1d", "col_2d", "col_3d", "col_binary", "col_float",
- "col_sint16", "col_sint32", "col_sint64"]
- GENERATE_GOLDEN = False
-
- # Data for CIFAR and MNIST are not part of build tree
- # They need to be downloaded directly
- # prep_data.py can be exuted or code below
- # import sys
- # sys.path.insert(0,"../../data")
- # import prep_data
- # prep_data.download_all_for_test("../../data")
- IMG_DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- IMG_SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
- DATA_DIR_TF2 = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
- SCHEMA_DIR_TF2 = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
-
-
- def test_tf_repeat_01():
- """
- a simple repeat operation.
- """
- logger.info("Test Simple Repeat")
- # define parameters
- repeat_count = 2
- parameters = {"params": {'repeat_count': repeat_count}}
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- filename = "repeat_result.npz"
- save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN)
-
-
- def test_tf_repeat_02():
- """
- a simple repeat operation to tes infinite
- """
- logger.info("Test Infinite Repeat")
- # define parameters
- repeat_count = -1
-
- # apply dataset operations
- data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False)
- data1 = data1.repeat(repeat_count)
-
- itr = 0
- for _ in data1:
- itr = itr + 1
- if itr == 100:
- break
- assert itr == 100
-
-
- def test_tf_repeat_03():
- '''repeat and batch '''
- data1 = ds.TFRecordDataset(DATA_DIR_TF2, SCHEMA_DIR_TF2, shuffle=False)
-
- batch_size = 32
- resize_height, resize_width = 32, 32
- decode_op = vision.Decode()
- resize_op = vision.Resize((resize_height, resize_width), interpolation=ds.transforms.vision.Inter.LINEAR)
- data1 = data1.map(input_columns=["image"], operations=decode_op)
- data1 = data1.map(input_columns=["image"], operations=resize_op)
- data1 = data1.repeat(22)
- data1 = data1.batch(batch_size, drop_remainder=True)
-
- num_iter = 0
- for item in data1.create_dict_iterator():
- num_iter += 1
- logger.info("Number of tf data in data1: {}".format(num_iter))
- assert num_iter == 2
-
-
- if __name__ == "__main__":
- logger.info("--------test tf repeat 01---------")
- # test_repeat_01()
-
- logger.info("--------test tf repeat 02---------")
- # test_repeat_02()
-
- logger.info("--------test tf repeat 03---------")
- test_tf_repeat_03()
|