|
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.common.parameter import ParameterTuple
- from mindspore.ops import operations as P
- from mindspore.ops import composite as C
-
-
- class NetConv3d(nn.Cell):
- def __init__(self):
- super(NetConv3d, self).__init__()
- out_channel = 4
- kernel_size = 2
- self.conv = P.Conv3D(out_channel,
- kernel_size,
- mode=1,
- pad_mode="valid",
- pad=0,
- stride=1,
- dilation=1,
- group=1)
-
- def construct(self, x, w):
- return self.conv(x, w)
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_conv3d():
- x = Tensor(np.arange(1 * 3 * 3 * 3 * 3).reshape(1, 3, 3, 3, 3).astype(np.float32))
- w = Tensor(np.arange(4 * 3 * 2 * 2 * 2).reshape(4, 3, 2, 2, 2).astype(np.float32))
- expect = np.array([[[[[12960., 13236.],
- [13788., 14064.]],
- [[15444., 15720.],
- [16272., 16548.]]],
- [[[32256., 33108.],
- [34812., 35664.]],
- [[39924., 40776.],
- [42480., 43332.]]],
- [[[51552., 52980.],
- [55836., 57264.]],
- [[64404., 65832.],
- [68688., 70116.]]],
- [[[70848., 72852.],
- [76860., 78864.]],
- [[88884., 90888.],
- [94896., 96900.]]]]]).astype(np.float32)
-
- context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
- net = NetConv3d()
- output = net(x, w)
- assert (output.asnumpy() == expect).all()
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- net = NetConv3d()
- output = net(x, w)
- assert (output.asnumpy() == expect).all()
-
-
- class MSConv3dNet(nn.Cell):
- def __init__(self, in_channels, out_channels, kernel_size, pad_mode='pad', padding=0, stride=1, dilation=1,
- has_bias=False, weight_init='normal'):
- super(MSConv3dNet, self).__init__()
- self.cv1 = nn.Conv3d(in_channels=in_channels,
- out_channels=out_channels,
- kernel_size=kernel_size,
- pad_mode=pad_mode,
- padding=padding,
- stride=stride,
- dilation=dilation,
- group=1,
- has_bias=has_bias,
- weight_init=weight_init,
- data_format='NCDHW')
-
- def construct(self, x):
- x = self.cv1(x)
- return x
-
-
- class MSGradNet(nn.Cell):
- def __init__(self, network):
- super(MSGradNet, self).__init__()
- self.grad = C.GradOperation(get_all=True, sens_param=True, get_by_list=True)
- self.network = network
- self.params = ParameterTuple(network.trainable_params())
-
- def construct(self, x, dy):
- grad_op = self.grad(self.network, self.params)
- output = grad_op(x, dy)
- return output
-
-
- def test_conv3d_grad():
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- dtype = np.float32
- out_c = 2
- kernel_size = (2, 2, 2)
- x = Tensor(np.array([[[[[1.6924546, 0.05080776, -0.6369957],
- [0.19091548, 2.1002553, 0.12015896],
- [0.6172031, 0.30017033, -0.35224986]],
- [[-1.1425182, -0.34934273, -0.20889424],
- [0.5866232, 0.8389834, 0.9311021],
- [0.2855873, 0.8851412, -0.7543979]],
- [[1.2528682, 0.5129298, -0.29809284],
- [0.48851815, -0.07557172, 1.1316293],
- [1.5198169, 2.1855755, -1.3964963]]]]]).astype(dtype))
- dy = Tensor(np.array([[[[[-1.4441139, -0.5044659],
- [0.16003707, 0.8761689]],
- [[0.31563494, -2.0222013],
- [-0.30620402, 0.8279746]]],
- [[[0.23009473, 0.7620112],
- [-0.22232814, -0.20075807]],
- [[0.18656139, 0.41005164],
- [0.19829972, 0.11900865]]]]]).astype(dtype))
- w = Tensor(np.array([[[[[-0.9358, -0.2679],
- [0.5304, -0.6917]],
- [[-0.3968, -0.6872],
- [-0.8452, -0.6712]]]],
- [[[[-0.0127, -1.1173],
- [0.2344, 1.6598]],
- [[0.7420, -0.1918],
- [-0.8876, -0.7472]]]]]).astype(dtype))
- w_exp = np.array([[[[[-0.9384, -0.2830],
- [0.5487, -0.6330]],
- [[-0.4148, -0.7200],
- [-0.8572, -0.6079]]]],
- [[[[-0.0109, -1.1089],
- [0.2138, 1.6478]],
- [[0.7450, -0.1866],
- [-0.8992, -0.7629]]]]]).astype(dtype)
- net = MSConv3dNet(x.shape[1], out_c, kernel_size, weight_init=w)
- grad_net = MSGradNet(net)
- optimizer = nn.SGD(net.trainable_params(), learning_rate=0.01, momentum=0.9)
- grad_net.set_train(True)
- output = grad_net(x, dy)
- optimizer(output[1])
- assert np.allclose(net.cv1.weight.asnumpy(), w_exp, atol=1.0e-4)
|